Potential utilization of industrial waste as feed material for the growth and reproduction of earthworms

  • Anjali Singh Vermibiotechnology Laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur (U.P.), India
  • Keshav Singh Vermibiotechnology Laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur (U.P.), India
Keywords: Bio-fertilizer, Biological waste, Cane sugar bagasse, Distillery effluents, Industrial waste, Vermicomposting

Abstract

The issue of managing organic waste such as animal waste and industrial waste has emerged as a result of the fast development in urbanization around the world. It can be hazardous to the environment and public health if these are not properly stored, collected, and disposed of. These biological wastes can be turned into nutrient-rich biofertilizers using the vermicomposting process. The bio-oxidative method includes the combined activity of earthworms and microbes. The pH, organic carbon, organic matter, and the C:N ratio of the various organic waste mixtures showed a declining tendency during this process but the content of nitrogen, available phosphorous and exchangeable potassium showed a rising trend as the vermicomposting time progressed. Maximum earthworm growth and reproduction were reported better in different feed materials prepared from industrial wastes. Therefore, the present review article is based on the knowledge of using earthworms to stabilize waste.

DOI: http://dx.doi.org/10.5281/zenodo.7730476

Downloads

Download data is not yet available.

References

1. Jain RK, Kapur M, Labana S, Lal B, Sharma PM, Bhattacharya D, et al. Microbial diversity: Application of microorganisms for biodegradation of xenobiotics. 2005.
2. Kolhe AS, Ingale SR, Sarode AG. Physico-chemical analysis of sugar mill effluents. Int Res J. 2008; 4(1): 307-311.
3. Mukesh D, Anil K. Bio treatment of industrial effluents. Elsevier, USA, 2005.
4. Suthar S. Pilot-scale vermireactors for sewage sludge stabilization and material remediation process: comparison with small-scale vermireactors. Ecol Eng. 2010; 36: 703-712.
5. Bettiol W. Effect of sewage sludge on the incidence of corn stalk rot caused by Fusarium, Summa. Phytopathol. 2004; 30: 16-22.
6. Manyuchi MM, Nyamunokora M. Granulation of vermicomposting using vermiwash as a binding media. Glob J Eng Sci Res. 2014; 1(1): 4-6.
7. Manyuchi MM, Mudamburi T, Phiri A, Muredzi P, Kanhukamwe QC. Impact of vermicompost on peas cultivated soil. Glob J Eng Sci Res. 2014; 1(1): 1-3.
8. Bhattacharjee G. Earthworm resources and waste management through vermicomposting in Tripura, Ph.D Thesis in Zoology Department, Tripura University, Tripura, India. 2002.
9. Chattopadhyay GN. Use of vermicomposting biotechnology for recycling organic wastes in agriculture. Int J Recycl Org Waste Aric. 2012; 1: 8.
10. Rezende MOO, Dores-Silva PR, Silva MD, Zozolotto TCB, Landgraf MD. Understanding the vermicompost process in sewage sludge: a Humic fraction study. Int J Agric For. 2014; 4: 94-99.
11. Khwairakpam M, Bhargava R. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Biores Technol. 2009; 100: 5846-5852.
12. Domínguez JJ, Edwards CA. Biology and ecology of earthworms species used for vermicomposting. In: Edwards CA, Arancon NQ, Sherman RL., eds. Vermiculture technology: Earthworms, organic waste and environmental management. CRC Press. Boca Raton, Florida. 2011.
13. Bhat SA, Singh J, Vig AP. Vermiremidiation of dyeing sludge from textile mill with the help of exotoxic earthworm Eisenia fetida Savigny. Environ Sci Pollut Res Int. 2013; 20: 5975-5982.
14. Srivastava R, Kumar D, Gupta SK. Bioremediation of municipal sludge by vermitechnology and toxicity assessment by Allium cepa. Biores Technol 2005; 96: 1867-1871.
15. Ansari A, Jaikishun S. Vermicomposting of sugarcane bagasse and rice straw and its impact on the cultivation of Phaseolus vulgaris L. in Guyana, South America. J Agric Tech. 2011; 72: 225-234.
16. Chauhan HK, Singh K. Effect of tertiary combinations of animal dung with agrowastes on the growth and development of earthworm Eisenia fetida during organic waste management. Int J Recycl Org Agric. 2013; 89(1): 101-112.
17. Garg VK, Chand S, Chhilar A, Yadav YK. Growth and reproduction of Eisenia fetida in various animal wastes during vermicomposting. Appl Ecol Environ Res. 2005; 3(2): 51-59.
18. Suthar S. Feasibility of vermicomposting in bio-stabilizatiosn of sludge from a distillery industry. Sci Total Environ. 2008; 394: 237-243.
19. Umamaheswari S, Viveka S, Vijayalakshmi GS. Indigenous vermiwash collecting device. Hindu J. 2003; 17: 1-2.
20. Pathak RK, Ram RA. Manual on Jaivik Krishi, Central Institute for Subtropical Horticulture. Rehmankhera, P.O. Kokari, Lucknow. 2004; 24: 31-32.
21. Nath G, Singh K. Utilization of Vermiwash Potential on summer vegetable crops. J Centr Eur Agricult. 2009; 10(4): 417-426.
22. Nath G, Singh K, Sing D. Chemical analysis of vermicomposts/vermiwash of different combinations of animal, agro and kitchen wastes. Aust J Basic Appl Sci. 2009; 3(4): 3671-3676.
23. Pondhe GM, Pawar NJ, Patil SF, Dhembane AJ. Impact of sugar mill effluent on the quality of ground water. Pollut Res. 1997; 16: 191-195.
24. Sangwan P, Kaushik CP, Garg VK. Vermicoposting of sugar industry waste (pressmud) mixed with cow dung employing an epigeic earthworm Eisenia fetida. Waste Manag Res. 2010; 2: 71-75.
25. Kaur A, Singh J, Vig AP, Dhaliwal SS, Rup PJ. Composting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Biores Technol. 2010; 101: 8192-8198.
26. Dominguez J, Edwards CA, Webster M. Vermicomposting of sewage sludge: effect of building material on the growth and reproduction of the earthworm Eisineaandrei. Pedobiologia. 2000; 44: 24-32.
27. Garg VK, Kaushik P. Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida. Biores Technol. 2005; 96: 1063-1071.
28. Bhat SA, Singh J, Vig AP. Genotoxic assessment and optimization of pressmud with the help of exotic earthworm Eisenia fetida. Environ Sci Pollut Res. 2014; 21: 8112-8123.
29. Romero E, Plazza C, Senesi N, Nogales R, Polo A. Humic acid-like fractions in raw and vermicompost winery and distillery wastes. Geoderma. 2007; 139: 397-406.
30. Singh J, Kaur A, Vig AP. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida. Appl Biochem Biotechnol. 2014; 174(4): 1403-1419.
31. Ravindran R, Sekran G. Bacterial composting of animal fleshing generated from tannery industries. Waste Manag. 2011; 30: 2622-2630.
32. Vig AP, Singh J, Wani SH, Dhaliwal SS. Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Biores Technol. 2011; 102: 7941-7945.
33. Vivas A, Moreno B, Garacia-Rodriguez S, Benitez E. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Biores Technol. 2009; 100: 1319-1326.
34. Singh J, Kaur A, Vig AP, Rup PJ. Role of Eisenia fetida in rapid recycling of nutrients from biosludge of beverage industry. Ecotoxicol Environ Safety. 2010; 73: 430-435.
35. Hait S, Tare V. Vermistabilization of primary sewage sludge. Biores Technol. 2011; 102: 2812-2820.
36. Ismail SA. The earthworm book. Other India Press, Mapusa. 2005; pp 101.
37. Devi J, Prakash M. Microbial population dynamics during vermicomposting of three different substrates amended with cow-dung. Int J Curr Microbial Appl Sci. 2015; 4(2): 1086-1092.
38. Gajalakshmi S, Abassi SA. Earthworm and vermicomposting. Int J Biotechnol. 2004; 3: 486-494.
39. Reinecke AJ, Viljoen SA, Saayman RJ. The suitability of Eudriluseugeniae, Perionyx excavates and Eisenia fetida (Oligochaeta) for vermicomposting in South America in terms of their temperature requirement. Soil Boil Biochem. 1992; 24: 1295-1307.
40. Kaplan O, Yidrim NC, Yiidirim N, Cimen M. Toxic elements in animals products and environmental health. Asian J Anim Vet Adv. 2011; 6(3): 228-232.
41. Arancon NQ, Edwards CA, Bierman P, Melzger AD, Lee S, Welch C. Effect of vermicompost on growth and marketable fruits of field-grown tomato, peepers and strawberries. Biores Technol. 2005; 47: 731-735.
42. Azizi P, Khomani AM, Mirsoheil M. Influence of cow manure vermicompost on growth of Dieffenbachia. Ecol Environ Conserv. 2008; 14(1): 1-4.
43. Delgado M, Bigeriego M, Walter I, Calbo R. Use of California red worm in sewage sludge transformation. Turrialba. 1995; 45: 33-41.
44. Zeyer J, Ranganathan LS, Chandra TS. Pressmud as biofertilizer for improving soil fertility and pulse crop productivity. ISCB Indo-Swiss collaboration in Biotech. A report Portfolio First Phase. 2004 (1999-2004).
45. Baskaran L, Sankar Ganesh K, Chidambaram ALA, Sundaramorthy P. Amelioration of sugar mill effluent polluted soil and its effect of green gram. Bot Res Int. 2009; 2(2): 131: 135.
46. Ezhumalai S, Thangavelu V. Kinetic and optimization studies on the bioconversion of lignocellulosic material into ethanol. Bioresources . 2010; 5:1879-1894.
47. Raza QUA, Bashir MA, Rehim A, Sial MU, Ali Raza HM, Atif HM, et al. Sugarcane industrial byproducts as challenges to environmental safety and their remedies: A review. Water. 2021; 13: 3495.
48. Mendiara T, Gayán P, Garcı́a-Labiano F, de Diego LF, Pérez-Astray A, Izquierdo MT, et al. Chemical looping combustion of biomass: An approach to BECCS. Energy Proc. 2017; 114: 6021-6029.
49. Ondrasek G, Kranjčec F, Filipović L, Filipović V, BubaloKovačić M, Badovinac IJ, et al. Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil; improve phytonutrition and growth, but increase cd accumulation in radish. Sci Total Environ. 2021; 753: 141902.
50. Herzel H, Dombinov V, Vogel C, Willbold S, Levandowski GV, Meiller M, et al. Soybean fertilized by p-phases from bagasse-based materials: P. extraction procedures, diffusive gradients in thin films (DGT), and X-ray diffraction analysis (XRD). Agronomy. 2020; 10: 895.
51. Watanabe MDB, Morais ER, Cardoso TF, Chagas MF, Junqueira TL, Carvalho DJ, et al. Process simulation of renewable electricity from sugarcane straw: Techno-economic assessment of retrofit scenarios in Brazil. J Clean Prod. 2020; 254: 120081.
52. Baskar M, Kayalvizhi C, Bose MSC. Eco-friendly utilization of distillery effluents in agriculture - A Review. Agric Rev. 2003; 24: 16-30.
53. Chakarbarty RN. Management of sugar and alcohl industry wastes- pollution control and conservation of energy and fertilizer. Proc. Symp. Disposal of sugar and distillery waste, U. P. Water Pollution Control Board, Lucknow, 1980.
54. Zalawadia NM, Patil RG, Raman S. Effect of distillery wastewater with fertilizer on onion and soil properties. Ind J Soc Sci. 1996; 44: 802-804.
55. Kaushik A, Nisha R, Jagjeeta K, Kaushik CP. Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Biores Technol. 2005; 96: 1860.
56. Hati KM, Biswas AK, Bandyopadhyay KK, Mishra AK. Soil Tillage Res. 2007; 92: 60.
57. Goswami L, Patel AK, Dutta G, Bhattacharya P, Gogoi N, Bhattachaya SS. Chemosphere. 2013; 92: 708.
58. Pandey GN, Carney GC. Environmental Engineering. Tata McGraw-Hill Publishing Company Limited, New Delhi. 1994: 360-398.
59. Ojha RB, Devkota D. Earthworm: ‘Soil and Ecosystem Engineers’- A review. World J Agricult Res. 2014; 2(6): 257-260.
60. Rajendran M, Thivyatharsan R. Performance of different species of earthworms on vermicoposting. Int J Res Agricult Food Sci. 2013; 2(3); 1-6.
61. Kale RD. Vermiculture scope for new biotechnology. In: Ghosheds AK. Earthworm Resources and Vermiculture. Zoological Survey of India, Calcutta. 1991; 105-108.
62. Tripathi G, Bhardwaj P. Comparative studies on biomass production, life cycle and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Biores Technol. 2004; 92: 275-278.
63. Edwards CA, Lofty JR. Biology of earthworms. Chapman and Hall, London. 1977.
64. Bernard JB, Allen ME, Ullrey DE. Feeding captive insectivorus animals: Nutritional aspects of insect as food. Nutrition Advisory Group Handbook, Fact Sheet 003. 2014; Available online: http://nagonline.net/wp-content/upload/2014/01/NAG-FS003-97-insects-JONI-FEB-24-2002-MODIFIED.PDF.
65. Aira M, Monroy F, Dominguez J, Mato S. How earthworm density affects microbial biomass and activity in pig manure. Eur J Soil Boil. 2002; 38: 7-10.
66. Suthar S. Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials, Biores Technol. 2007; 97: 2474-2477.
67. Lubbers IM, van Groenigen KJ, Fonte SJ, Six J, Brussaard L, van Grorningen J W. Greenhouse-gas emissions from soils increased by earthworms. Nat Climate Change. 2013; 3: 187-194.
68. Aalok A, Tripathi AK, Soni P. Vermicomposting: A better option for organic solid waste management. J Hum Ecol. 2008; 24(1): 54-64.
69. Sinha K, Valani D, Soni B, Chandran V. Earthworm vermicompost. A sustainable alternative to chemical fertilizers for organic farming. Agriculture issues and policies. Nova Science Publishers, Inc., New York. 2011.
70. Reynolds JW. The earthworms (Lumbricidae and Spargenophilidae) of ooooooo. The Royal Ontario Museum, Toronto. 1977.
71. Singh J, Kaur A, Vig AP, Rup PJ. Role of Eisenia fetida in rapid recycling of nutrients from biosludge of beverage industry. Ecotoxicol. Environ. Saf. 2009; 73(3): 430-435.
72. Suthar S. Potential utilization of Guar gum industrial wastes in vermicomposts productions. Biores Technol. 2006; 97: 2474-2477.
73. Aquino AM, Almedia DE, Freire DL, Polli HDE. Earthworms (Oligochaeta) reproduction in manure and sugarcane bagasse. Pesquisa Agropecuaria Brasil. 1994; 29: 161-168.
74. Gupta R, Garg VK. Stabilization of primary sewage sludge during vermicomposting. J Hazard Mater. 2008; 153: 1023-1030.
75. Manyuchi MM, Phiri A. Vermicomposting as a solid waste management strategy: a review. Int J Sci Eng Technol. 2013; 2(12): 1234-1242.
76. Chauhan HK, Singh K. Effect of binary combinations of buffalo, cow and goat dung with different agro wastes on reproduction and development of earthworm Eisenia fetida (Haplotoxida: Lumbricidae), World J Zool. 2012; 7(1): 23-29.
77. Bhat SA, Singh J, Vig AP, Management of sugar industrial wastes through vermitechnology. Int Lett Nat Sci. 2016; 55: 35-43.
78. Loh TC, Lee YC, Liang JB, Tan D. Vermicomposting of cattle and goat manure by Eisenia foetida and their growth and reproduction performance. Biores Technol. 2004; 96: 11-14.
79. Jesikha M. Effect of paper waste on the life cycle of earthworm Eudrilus eugeniae (Kinberg). Scrutiny Int Res J Biol Environ Sci. 2014; 1(1): 7-12.
80. Sadia MA, Hossain MA, Islam MR, Akter T, Taha DC. Growth and reproductive performances of earthworm (Perionyx excavatus) fed with different organic waste materials. Adv Vet Anim Res. 2020; 7(2): 331-337.
81. Dash MC, Senapati BK. Cocoon morphology, hatching and emergence pattern in tropical earthworms. Pedobiologia. 1980; 20: 316-324
82. Jaweria S, Aamer AK, Iftikhar H, Shamim A. Growth and Reproduction of Earthworm (Eisenia fetida) in Different Organic Media. Pak J Zool. 2005; 37: 211-214.
83. Reinecke AJ, Viijoen A. Reproduction of the African earthworm, Eudriluseugeniae (Oligochaeta) – cocoons. Biol Fertil Soils. 1988; 7: 23-27.
Published
2023-03-13
How to Cite
(1)
Singh, A.; Singh, K. Potential Utilization of Industrial Waste As Feed Material for the Growth and Reproduction of Earthworms. European Journal of Biological Research 2023, 13, 71-80.
Section
Review Articles