Antidiabetic potential of mucilage fraction extracted from Astragalus gyzensis seeds

  • Aicha Tedjani Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria
  • Zakaria Boual Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria
  • Mohamed Didi Ould El Hadj Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria
  • Touhami Lanez Laboratory of Valorisation and Technology of Sahara Resources (VTRS) University Echahid hamma lakhdar, El-Oued 39000, Algeria
  • Hakim Belkhalfa Scientific and Technical Research Center in Physicochemical Analysis, Tipaza 42000, Algeria
  • Zainab El Alaoui-Talibi Faculty of Sciences and Techniques, University of Cadi Ayyad, Marrakech 40000, Morocco
  • Cherkaoui El Modafar Faculty of Sciences and Techniques, University of Cadi Ayyad, Marrakech 40000, Morocco
  • Slim Abdelkafi Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National Engineering School of Sfax, Sfax University, Sfax 3038, Tunisia
  • Imen Fendri Laboratory of Plant Biotechnology Applied to the Improvement of Plants, Faculty of Sciences, Sfax University, Sfax 3038, Tunisia
  • Didier Le Cerf Department of Chemistry, University of Rouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
  • Pascal Dubessay Department of Chemistry, University of Rouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
  • Cédric Delattre Institute of Pascal, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
  • Pierre Guillaume Institute of Pascal, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
  • Philippe Michaud Institute of Pascal, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
Keywords: Astragalus gyzensis Bunge, Mucilage, Antidiabetic, Galactomannans, Dietary supplement fiber

Abstract

The objective of the current work is to extract a new mucilage fraction from Astragalus gyzensis Bunge. seeds, which are collected from the El-Oued province (septentrional Algerian Sahara) and evaluated for their antidiabetic potential. The mucilage fraction is obtained using hot water extraction followed by alcoholic precipitation of polysaccharides by cold ethanol (96%). The primary investigation was performed by describing the main structural features of the extract through colorimetric assays, Fourier-transform infrared spectroscopy and thin-layer chromatography analysis using two systems. Biological activity was also monitored by antidiabetic activity by testing the inhibition of α-amylase and α-glucosidase enzymes in vitro. The extraction yield was 20.69%. The chemical composition mainly consisted of 78.60±0.29% carbohydrates, among them 63.92±0.67% neutral sugar, 15.78±0.76% uronic acid, 8.08±0.04% proteins and 2.57±0.05% phenolic compounds. The results obtained by thin-layer chromatography analysis showed the dominance of mannose and galactose. Fourier-transform infrared spectrum showed characteristic bands expected galactomannans. The investigations highlighted the antihyperglycemic effect in a dose-dependent manner by the inhibition of the α-amylase enzyme (IC50=0.8±0.005 mg/mL). These factors make it suitable for the industrial application of dietary supplement fiber made for diabetic individuals.

DOI: http://dx.doi.org/10.5281/zenodo.7618530

Downloads

Download data is not yet available.

References

1. Noronha M, Pawar V, Prajapati A, Subramanian RB. A literature review on traditional herbal medicines for malaria. South Afr J Bot. 2020; (128): 292-303.
2. Chelladurai GRM, Chinnachamy C. Alpha amylase and alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz J Pharmaceut Sci. 2018; 54(1): 1-10.
3. Ullah S, Khalil AA, Shaukat F, Song Y. Extraction and Biomedical Properties of Polysaccharides. Foods. 2019; 8(304): 1-23.
4. Chopra C, Abrol BK, Handa KL. Medicinal Plants of Arid Regions. [in French]. Paris-7e. 1960.
5. Wojciechowski MF, Lavin M, Sanderson MJ. A phylogeny of Legumes (Leguminosae) based on analysis of the plastid MATK gene resolves many well-supported subclades within the family. Am J Bot. 2004; 11: 1846.
6. Abd El-Ghani MM, El-Sayed ASA, Moubarak A, Rashad R, Nosier H, Khattab A. Biosystematic Study on Some Egyptian Species of Astragalus L. (Fabaceae). Agriculture. 2021; 11(125): 1-16.
7. Bratkov VM, Shkondrov AM, Zdraveva PK, Krasteva IN. Flavonoids from the Genus Astragalus: Phytochemistry and Biological Activity. Pharmacogn Rev. 2016; 10(19): 11-32.
8. Chehma A. Catalog of spontaneous plants of the northern Algerian Sahara. [in French]. 2006; 141.
9. Juan CA, de la Lastra JMP, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021; 22(4642): 1-21.
10. Daiber A, Hahad O, Andreadou I, Steven S, Daub S, Münzel T. Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond. Redox Biol. 2021; 42(101875): 1-21.
11. Dandekar P, Ameeta S, Kumar R. Structure-activity relationships of pancreatic α-amylase and α-glucosidase as antidiabetic targets. Stud Nat Prod Chem. 2021; 70: 381-410.
12. Shah SB, Sartaj L, Ali F, Shah SIA, Khan MT. Plant extracts are the potential inhibitors of α-amylase: a review. MOJ Bioequiv Availab. 2018; 5(5): 270-273.
13. Pinto Vieira, I. G, Mendes FN, da Silva SC, Paim RT, da Silva BB, Benjamin SR, Florean EP, Florindo Guedes MI. Antidiabetic effects of galactomannans from Adenanthera pavonina L. in streptozotocin-induced diabetic mice. Asian Pac J Trop Med. 2018; 11: 116-122.
14. Kashtoh H, Baek K. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants. 2022; 11(2722): 1-25.
15. Tran N, Pham B, Le L. Review Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology. 2020; 9(252): 1-31.
16. Lv Q, Cao J, Liu R, Chen H. Structural characterization, α-amylase and α-glucosidase inhibitory 2 activities of polysaccharides from wheat bran. Food Chem. 2021; 341(Pt 1): 128218.
17. Khan RU, Rashid AM, Khan S, Ozturk E. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat Triticum aestivum L. Pakistan J Agric Res. 2010; 23(3-4): 113-121.
18. Addoun N, Boual Z, Delattre C, Chouana T, Gardarin C, Dubessay P, et al. Beneficial Health Potential of Algerian Polysaccharides Extracted from Plantago ciliata Desf.(Septentrional Sahara) Leaves and Seeds. Appl Sci. 2021; 11(4299): 1-15.
19. Dubois M, Gilles KA, Hamilton JK, Pebers PA, Smith F. Colorimetric method for determination of sugar and relayed substances. Anal Chem. 1956; (28): 350-356.
20. Monsigny M, Petit C, Roche AC. Colorimetric determination of neutral sugars by a resorcinol sulfuric acids micromethod. Anal Biochem. 1988; 175: 525-530.
21. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973; 54: 484-489.
22. Bradford MMA. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976; 72: 248-254.
23. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16: 144-158.
24. Olennikov DN, Rokhin AV. Polysaccharides of Fabaceae. I. Galactomannan of Astragalus sericeocanus seeds. Chem Nat Comp. 2008; 44(6): 685-687.
25. Hoton-Dorge M. Separation of aldoses and polysaccharides by thin layer chromatography on cellulose and new spraying reagent allowing their sensitive detection. [in French]. Chromatography. 1976; 116: 417-423.
26. Cheng Y, Jia G, Jiang-Sheng Z, Shao-Ping L. Use of HPTLC to Differentiate Among the Crude Polysaccharides in Six Traditional Chinese Medicines. J Planar Chromatogr. 2010; 23: 46-49.
27. Kumar A, Lakshman K, Jayaveera K, Shekar S, Swamy N, Khan S, et al. In vitro α-amylase inhibition and antioxidant activities of methanolic extract of Amaranthus caudatus Linn. Oman Med J. 2011; 26: 166-170.
28. Kajaria D, Tripathi J, Tripathi YB, Tiwari S. In vitro α-amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug-Shirishadi. J Adv Pharm Technol Res. 2013; 4: 206-209.
29. Bisht S, Kant R, Kumar V. α-glucosidase inhibitory activity of polysaccharide isolated from Acacia tortilis gum exudate. Int J Biol Macromol. 2013; 59):214-220.
30. Qian JY, Bai YY, Tang J, Chen W. Antioxidation and α-glucosidase inhibitory activities of barley polysaccharides modified with sulfation. LWT-Food Sci Technol. 2015; 64: 104-111.
31. Telagari M, Hulltti K. In vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Ind J Pharmacol. 2015; 47: 425-429.
32. Delattre C, Pierre G, Gardarin C, Traikia M, Elboutachfaiti R, Isogai A, Michaud P. Antioxidant activity of a polyglucuronic acid sodium salt obtained from TEMPOmediated oxidation of xanthan. Carbohydrate Polymers. 2015; 116: 34-41.
33. Rashid F, Hussain S, Ahmed Z. Extraction purification and characterization of galactomannan from fenugreek for industrial utilization. Carbohydrate Polymers. 2017; 180: 88-95.
34. Chakou FZ, Boual Z, Hadj MDOE, Belkhalfa H, Bachari K, El Alaoui-Talibi Z, et al. Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds. Plants. 2021; 10: 2658.
35. Gallão MI, Normando LO, Vieira ÍGP, Mendes FNP, Ricardo NMPS, Brito ES. Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Indust Crops Prod. 2013; 47: 58-62.
36. Pawar HA, Lalitha KG. Isolation, purification and characterization of galactomannans as an excipient from Senna tora seeds. Int J Biol Macromol. 2014; 65: 167-175.
37. Srivastava M, Kapoor VP. Seed galactomannans: an overview. Chem Biodivers. 2005; 2: 295-317.
38. Mestechkina NM, Anulov OV, Smirnova NI, Shcherbukhin VD. Composition and structure of a galactomannan macromolecule from seeds of Astragalus lehmannianus bunge. Appl Biochem Microbiol. 2000; 36(5): 502-506.
39. Olennikov DN, Rokhin AV. Polysaccharides of Fabaceae. II. Galactomannan from Astragalus danicus seeds. Chem Nat Comp. 2009; 45(3): 297-299.
40. Olennikov DN, Rokhin AV. Fabaceae polysaccharides. III. Galactomannan from Astragalus cicer seeds. Chem Nat Comp. 2010; 46(2): 165-168.
41. Olennikov DN, Rokhin AV. Polysaccharides of Fabaceae. VI. Galactomannans from seeds of Astragalus alpinus and A. tibetanus. Chem Nat Comp. 2011; 47(3): 343-346.
42. Boual Z, Pierre G, Delattre C, Benaoun F, Petit E, Gardarin C, et al. Mediterranean semi-arid plant Astragalus armatus as a source of bioactive galactomannan. Bioactive Carbohydr Dietary Fibre. 2015; 5: 10-18.
43. Chouana T. Pierre G. Vial C. Gardarin C. Wadouachi A. Cailleu D. et al. Structural characterization and rheological properties of a galactomannan from Astragalus gombo Bunge. seeds harvested in Algerian Sahara. Carbohydrate Polymers. 2015; 1-32.
44. Tang Y, Xiao Y, Tang Z, Jin W, Wang Y, Chen H, et al. Extraction of polysaccharides from Amaranthus hybridus L. by hot water and analysis of their antioxidant activity. PeerJ. 2019; 7: 7149.
45. Horan NJ, Eccles CR. Purification and characterization of extracellular polysaccharide from activated sludges. Pergamon Journals Ltd. 1986; 20(11): 1427-1432.
46. Liu P, Xue J, Tong S, Dong W, Wu P. Structure Characterization and Hypoglycaemic Activities of Two Polysaccharides from Inonotus obliquus. Molecules. 2018; 23: 1-15.
47. Zhang ZP, Shen CC, Gao FL, Wei H, Ren DF, Lu J. Isolation, Purification and Structural Characterization of Two Novel Water-Soluble Polysaccharides from Anredera cordifolia. Molecules. 2017; 22(1276): 1-13.
48. Chouaibi M, Rezig L, Lakoud A, Boussaid A, Hassouna M, Ferrari G, et al. Exploring potential new galactomannan source of Retama reatam seeds for food, cosmetic and pharmaceuticals: Characterization and physical, emulsifying and antidiabetic properties. Int J Biol Macromol. 2019; 124: 1167-1176.
49. Feng L, Yin J, Nie S, Wan Y, Xie M. Fractionation, physicochemical property and immunological activity of polysaccharides from Cassia obtusifolia. Int J Biol Macromol. 2016; 1-35.
50. Hammi KM, Hammami M, Rihouey C, Cerf DL, Ksouri R, Majdoub H. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chem. 2016; 1(184): 9-80.
51. Kashef RKH, Hassan HMM, Afify AS, Ghabbour S, Saleh NT. Effect of Soybean Galactomannan on the Activities of á-Amylase, Trypsin, Lipase and Starch Digestion. J Appl Sci Res. 2008; 4(12): 1893-1897.
52. Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr. 2020; 8(12): 6320-6337.
53. Zhu ZY, Luo Y, Dong GL, Ren YY, Chen LJ, Guo MZ, et al. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus. Int J Biol Macromol. 2016; 87: 570-576.
54. Le B, Anh P, Yang S. Polysaccharide Derived from Nelumbo nucifera Lotus. Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers. 2021; 13(11): 1780.
55. Kim M, Kim E, Kwak HS, Jeong Y. The ingredients in Saengshik, a formulated health food, inhibited the activity of α-amylase and α-glucosidase as anti-diabetic function. Nutr Res Pract. 2014; 8(5): 602-606.
56. Abou El Azm N, Fleita D, Rifaat D, Mpingirika EZ, Amleh A, El‐Sayed MMH. Production of Bioactive Compounds from the Sulfated Polysaccharides Extracts of Ulva lactuca: Post‐extraction Enzymatic Hydrolysis Followed by Ion‐exchange Chromatographic Fractionation. Molecules. 2019; 24(2132): 1-17.
57. Anwar S, Desai S, Mandlik R. Exploring Antidiabetic Mechanisms of Action of Galactomannan: A Carbohydrate Isolated from Fenugreek Seeds. J Complem Integr Med. 2009; 6(1): 1-10.
Published
2023-02-07
How to Cite
(1)
Tedjani, A.; Boual, Z.; Ould El Hadj, M. D.; Lanez, T.; Belkhalfa, H.; El Alaoui-Talibi, Z.; El Modafar, C.; Abdelkafi, S.; Fendri, I.; Le Cerf, D.; Dubessay, P.; Delattre, C.; Guillaume, P.; Michaud, P. Antidiabetic Potential of Mucilage Fraction Extracted from Astragalus Gyzensis Seeds. European Journal of Biological Research 2023, 13, 18-30.
Section
Research Articles