Tick saliva antigen-based vaccines, disease protection and prophylaxis

  • Nidhi Yadav Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, U.P. India
  • Ravi Kant Upadhyay Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, U.P. India
Keywords: Tick, Vaccine, Tick-borne

Abstract

This review emphasizes the immune responses to tick infestation and the administration of vaccine to save the life of man and his livestock. There are so many vaccines in operation in various parts of the world. These vaccines have been developed by using tick saliva toxins or recombinant antigens synthesized. This article explains the use of modern molecular tools such as genomics and proteomics in identification and search of new potent antigens which could prepare sizable defense against tick-borne pathogens. The present article also highlights explorations on salivary gland secreted molecules, genes and their expression for preparation of the highly efficacious targeted anti-tick vaccine. There is a need to search feeding inhibitors of ticks so that pathogen transmission can be blocked and easy disruption of enzootic cycle become possible. In addition, protein antigens from tick midgut must be searched to have a new multi-target vaccine to counter-attack tick infestation in various animal and human hosts.

DOI: http://dx.doi.org/10.5281/zenodo.6386931

Downloads

Download data is not yet available.

References

1. Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens. 2021; 10(2): 210.
2. Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, et al. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol. 2021; 12: 628054.
3. Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. Insects. 20211; 2(1): 83.
4. van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines. 2021; 9(7): 725.
5. Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol. 2017; 7: 199.
6. Villar M, Pacheco I, Merino O, Contreras M, Mateos-Hernández L. Tick and Host Derived Compounds Detected in the Cement Complex Substance. Biomolecules. 2020; 10(4): 555.
7. Franzin AM, Maruyama SR, Garcia GR, Pereira R. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasit Vectors. 2017; 10: 51.
8. Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics. 2021; 22(1): 152.
9. Merino O, Alberdi P, de la Lastra JMP, de la Fuente J. Tick vaccines and the control of tick-borne pathogens. Front Cell Infect Microbiol. 2013; 3: 30.
10. Willadsen P. Anti-tick vaccines. Parasitology. 2004; 129 Suppl: S367-87.
11. De la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia JC. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine gavac. Gen Anal Biomol Eng. 1999; 15: 143-148.
12. Ndawula C Jr, Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines. 2020; 8(3): 457.
13. Garcia GR, Chaves Ribeiro JM, Maruyama SR, Gardinassi LG, Nelson K, Ferreira BR, et al. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci Rep. 2020; 10(1): 12857.
14. van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines. 2021; 9(7): 725.
15. Rodriguez-Vivas RI, Jonsson NN, Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol Res. 2018; 117(1): 3-29.
16. Brossard M, Wikel SK. Tick immunobiology. Parasitology. 2004; 129: S161-S176.
17. Tabor AE, Ali A, Rehman G, Garcia GR, Zangirolamo AF, Malardo T, Jonsson NN. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front Cell Infect Microbiol. 2017; 7: 506.
18. Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors. 2019; 12(1): 229.
19. Almazán C, Fourniol L, Rouxel C, Alberdi P, Gandoin C, Lagrée AC, et al. Experimental Ixodes ricinus-Sheep Cycle of Anaplasma phagocytophilum NV2Os Propagated in Tick Cell Cultures . Front Vet Sci. 2020; 7: 40.
20. Galay RL, Umemiya-Shirafuji R, Bacolod ET, Maeda H, Kusakisako K, Koyama J, et al. Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress. PLoS One. 2014; 9(3): e90661.
21. Rodríguez-Mallon A. Developing Anti-tick Vaccines. Methods Mol Biol. 2016; 1404: 243-259.
22. Franzin AM, Maruyama SR, Garcia GR, Oliveira RP, Ribeiro JM, Bishop R. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasit Vectors. 2017; 10(1): 51.
23. Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, et al. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis. 2020; 14(2): e0007758
24. Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines. 2020; 8(4): 702.
25. Guerrero FD, Andreotti R, Bendele KG, Cunha RC, Miller RJ, Yeater K, Pérez de León AA. Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations. Parasit Vectors. 2014; 7: 475.
26. Maritz-Olivier C, Stutzer C, Jongejan F, Neitz AW, Gaspar AR. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol. 2007; 23(9): 397-407.
27. Ribeiro JM, Evans PM, MacSwain JL, Sauer J. Amblyomma americanum: characterization of salivary prostaglandins E2 and F2 alpha by RP-HPLC/bioassay and gas chromatography-mass spectrometry. Exp Parasitol. 1992; 74: 112-116.
28. Kotal J, Langhansova H, Lieskovska J, Andersen JF, Francischetti IM, Chavakis T, et al. Modulation of host immunity by tick saliva. J Proteom. 2015; 128: 58-68.
29. Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PLoS Pathog. 2010; 6: e1001205.
30. Chmelar J, Calvo E, Pedra JH, Francischetti IM, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteom. 2012; 75: 3842-3854.
31. Narasimhan S, Koski RA, Beaulieu B, Anderson JF, Ramamoorthi N, Kantor F, et al. A novel family of anticoagulants from the saliva of Ixodes scapularis. Insect Mol Biol. 2002; 11: 641-650.
32. Francischetti IM, Mather TN, Ribeiro JM. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochim Biophys Res Commun. 2003; 305: 869-875.
33. De S, Kitsou C, Sonenshine DE, Pedra JHF, Fikrig E, Kassis JA, Pal U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends Genet. 2021; 37(1): 8-11.
34. Contreras M, Alberdi P, De Mera IGF, Krull C. Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection. Front Cell Infect Microbiol. 2017; 7: 360.
35. Giachetto PF, Cunha RC, Nhani A Jr, Garcia MV, Ferro JA, Andreotti R. Gene Expression in the Salivary Gland of Rhipicephalus (Boophilus) microplus Fed on Tick-Susceptible and Tick-Resistant Hosts. Front Cell Infect Microbiol. 2020; 9: 477.
36. Hajnická V, Vančová-Štibrániová I, Slovák M, Kocáková P, Nuttall PA. Ixodid tick salivary gland products target host wound healing growth factors. Int J Parasitol. 2011; 41(2): 213-223.
37. Nikpay A, Nabian S. Immunization of Cattle with Tick Salivary Gland Extracts. J Arthropod Borne Dis. 2016; 10(3): 281-90.
38. de la Fuente J, Blouin EF, Kocan KM. Infection exclusion of the rickettsial pathogen Anaplasma marginale in the tick vector Dermacentor variabilis. Clin Diagn Lab Immunol. 2003; 10(1): 182-184.
39. Bhowmick B, Han Q. Understanding Tick Biology and Its Implications in Anti-tick and Transmission Blocking Vaccines Against Tick-Borne Pathogens. Front Vet Sci. 2020; 9: 319.
40. Gondard M, Cabezas-Cruz A, Charles RA, Vayssier-Taussat M, Albina E, Moutailler S. Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance. Front Cell Infect Microbiol. 2017; 7: 490.
41. Gillingham EL, Hansford KM, Meadows S, Henney J, Hernández-Triana LM, Muscat I. Ticks on the Channel Islands and implications for public health. Ticks Tick Borne Dis. 2020; 11(3): 101405.
42. Ali A, Khan MA, Zahid H, Yaseen PM, Khan MQ, Nawab J. Seasonal Dynamics, Record of Ticks Infesting Humans, Wild and Domestic Animals and Molecular Phylogeny of Rhipicephalus microplus in Khyber Pakhtunkhwa Pakistan. Front Physiol. 2019; 10: 793.
43. Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol. 2020; 18(10): 587-600.
44. Kazimirova M, Stibraniova I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013; 3: 43.
45. Neelakanta G, Li X, Pal U, Liu X, Beck DS, DePonte K, et al. Outer surface protein b is critical for Borrelia burgdorferi adherence and survival within ixodes ticks. PLoS Pathog. 2007; 3: e33.
46. Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell; 2004; 119(4): 457-468.
47. Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, et al. Ospc facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest. 2004; 113: 220-230.
48. Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, et al. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun. 2004; 72(10): 5938-5946.
49. Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005; 436(7050): 573-577.
50. Chlastáková A, Kotál J, Beránková Z, Kaščáková B, Martins LA, Langhansová H, Prudnikova T. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties. In Vitro. Front Immunol. 2021; 12: 626200.
51. Lynn GE, Diktas H, DePonte K, Fikrig E. Naturally Acquired Resistance to Ixodes scapularis Elicits Partial Immunity against Other Tick Vectors in a Laboratory Host. Am J Trop Med Hyg. 2021; 104(1): 175-183.
52. Olds CL, Mwaura S, Odongo DO, Scoles GA, Bishop R, Daubenberger C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit Vectors. 2016; 9(1): 484.
53. Lock O, Perez E, Villar M, Flores D, Rojas R. Bioactive Compounds from Plants Used in Peruvian Traditional Medicine. Nat Prod Commun. 2016; 11(3): 315-337.
54. Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines. 2020; 8(3): 451.
55. Sanches GS, Couto J, Silva-Pedrosa R, Ferrolho J, Santos AS, Santos-Silva MM, et al. Molecular heterogeneity of Rhipicephalus sanguineussensulato and screening for Ehrlichia canis in mainland Portugal. Ticks Tick Borne Dis. 2018; 9(6): 1383-1390.
56. Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, et al. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva. Front Cell Infect Microbiol. 2017; 7: 476.
57. de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 2006; 28(7): 275-283.
58. Prevot PP, Adam B, Boudjeltia KZ, Brossard M, Lins L, Cauchie P. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J Biol Chem. 2006; 281: 26361-26369.
59. Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009; 6(5): 482-492.
60. Hojgaard A, Biketov SF, Shtannikov AV, Zeidner NS, Piesman J. Molecular identification of Salp15, a key salivary gland protein in the transmission of Lyme disease spirochetes, from Ixodes persulcatus and Ixodes pacificus (Acari: Ixodidae). J Med Entomol. 2009; 46: 1458-1463.
61. Hovius JW, Van Dam AP, Fikrig E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007; 23: 434-438.
62. Hovius JW, Schuijt TJ, De Groot KA, Roelofs JJ, Oei GA, Marquart JA, et al. Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva. J Infect Dis. 2008; 198: 1189-1197.
63. Schwalie PC, Schultz J. Positive selection in tick saliva proteins of the Salp15 family. J Mol Evol. 2009; 68: 186-191.
64. Kotsyfakis M, Anderson JM, Andersen JF, Calvo E, Francischetti IM, Mather TN, et al. Cutting edge: immunity against a ‘silent’ salivary antigen of the Lyme vector Ixodes scapularis impairs its ability to feed. J Immunol. 2008; 181: 5209-5212.
65. Wagemakers A, Coumou J, Schuijt TJ, Oei A, Nijhof AM, Van‘t Veer C, Van der Poll T. An Ixodes ricinus tick salivary lectin pathway inhibitor protects Borrelia burgdorferi sensu lato from human complement. Vector-Borne Zoonotic Dis. 2016; 16: 223-228.
66. Chmelar J, Anderson J, Mu J, Jochim R, Valenzuela J, Kopecky J. Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics. 2008; 9: 233.
67. Cramaro WJ, Revets D, Hunewald OE, Sinner R, Reye AL, Muller CP. Integration of Ixodes Ricinus genome sequencing with transcriptome and proteome annotation of the naive midgut. BMC Genomics. 2015; 16: 1-15.
68. Lewis LA, Radulovic ZM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick-Borne Dis. 2015; 6: 424-434.
69. Schwarz A, Tenzer S, Hackenberg M, Erhart J, Gerhold-Ay A, Mazur J, Kuharev JJ. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol Cell Proteom. 2014; 13: 2725-2735.
70. Chmelar J, Kotal J, Kopecky J, Pedra JH, Kotsyfakis M. All for one and one for all on the tick-host battlefield. Trends Parasitol. 2016; 32: 368-377.
71. Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Commun. 2016; 7: 10507.
72. Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol. 2013; 4: 337.
73. Zavašnik-Bergant T, Vidmar R, Sekirnik AL, Kopáček P, Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front Cell Infect Microbiol. 2017; 7: 288.
74. Narasimhan S, Montgomery RR, DePonte K, Tschudi C, Marcantonio N, Anderson JF, et al. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc Natl Acad Sci USA. 2004; 101: 1141-1146.
75. Schuijt TJ, Hovius JW, Van der Poll T, Van Dam AP, Fikrig E. Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol. 2011; 27: 40-47.
76. Oleaga A, Soriano B, Llorens C, Pérez-Sánchez R. Sialotranscriptomics of the argasid tick Ornithodoros moubata along the trophogonic cycle. PLoS Negl Trop Dis. 2021; 15(2): e0009105.
77. Trimnell AR, Hails RS, Nuttall PA. Dual action ectoparasite vaccine targeting ‘exposed’ and ‘concealed’ antigens. Vaccine. 2002; 20: 3560-3568.
78. Nuttall PA, Trimnell AR, Kazimirova M, Labuda M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasit Immunol. 2006; 28: 155-163.
79. Trimnell AR, Davies GM, Lissina O, Hails RS, Nuttall PA. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 2005; 23: 4329-4341.
80. Zhou W, Tahir F, Wang JC, Woodson M, Sherman MB, Karim S, et al. Discovery of Exosomes From Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick-Human Skin Interface. Front Cell Dev Biol. 2020; 8: 554.
81. Garcia GR, Maruyama SR, Nelson KT, Ribeiro JM, Gardinassi LG, Maia AA. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host. Parasites Vectors. 2017; 10(1): 144.
82. Kopácek P, Galay RL O, Buresová V, Daffre S. Tick innate immunity. Adv Exp Med Biol. 2010; 708: 137-162.
83. Parizi LF, Githaka NW, Logullo C, Konnai S, Masuda A, Ohashi K, da Silva VI. The quest for a universal vaccine against ticks: cross-immunity insights. Vet J. 2012; 194(2): 158-165.
84. Dai O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I, et al. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci USA. 2009; 106(4): 1033-1038.
85. Hojgaard A, Biketov SF, Shtannikov AV, Zeidner NS, Piesman J. Molecular identification of Salp15, a key salivary gland protein in the transmission of Lyme disease spirochetes, from Ixodes persulcatus and Ixodes pacificus (Acari: Ixodidae). J Med Entomol. 2009; 46: 1458-1463.
86. Coumou H, BelEH. Improving the diagnosis of eosinophilic asthma. Expert Rev Respir Med. 2016; 10(10): 1093-1103.
87. Krause PJ, Narasimhan S, Wormser GP, Barbour AG, Platonov AE, Brancato J, Lepore T. Tick Borne Diseases Group. Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerg Infect Dis. 2014; 20(7): 1183-1190.
88. van den Hoek, HL, Bos WJ, de Boer A, van de Garde EM. Statins and prevention of infections: systematic review and meta-analysis of data from large randomised placebo controlled trials. BMJ Clin Res. 2011; 343.
89. Narasimhan V, Wilson K, Britto M, Warrier S, Lynch AC, Michael M, et al. Outcomes Following Cytoreduction and HIPEC for Pseudomyxoma Peritonei: 10-Year Experience. J Gastrointest Surg. 2020; 24(4): 899-906.
90. Canales M, Naranjo V, Almazán C, Molina R, Tsuruta SA, Szabó MP, et al. Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, subolesin. Parasitol Res. 2009; 105(1): 97-111.
91. De la Fuente J, Almazan C, Blouin EF, Naranjo V, Kocan KM. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res. 2006; 100: 85-91.
92. Bensaci M, Bhattacharya D, Clark R, Hu LT. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine. 2012; 30(42): 6040-6046.
93. Havlíková S, Ličková M, Klempa B. Non-viraemic transmission of tick-borne viruses. Acta Virol. 2013; 57(2): 123-129.
94. Perner J, Sobotka R, Sima R, Konvickova J, Sojka D, Oliveira PL, et al. Acquisition of exogenous haem is essential for tick reproduction. Elife. 2016; 5: e12318.
95. Gomes H, Moraes J, Githaka N, Martins R, Isezaki M. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation. Vet Parasitol. 2015; 211(3-4): 266-273.
96. Lu H, McClung CR, Zhang C. Tick Tock: Circadian Regulation of Plant Innate Immunity. Annu Rev Phytopathol. 2017; 55: 287-311.
97. Rosendal GK, Myhr AI. GMO assessment in Norway: societal utility and sustainable development. EMBO Rep. 2009; 10(9): 939-940.
98. VanBlargan LA, Himansu S, Foreman BM. An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Reports. 2018; 25(12): 3382-3392.e3.
99. Chen X, Yu Z, Guo L, Li L, Meng H, Wang D, Liu R, Liu J. Life cycle of Haemaphysalis doenitzi (Acari: Ixodidae) under laboratory conditions and its phylogeny based on mitochondrial 16S rDNA. Exp Appl Acarol. 2012; 56(2): 143-150.
100. Weiss BL, Reuben Kaufman W. The relationship between 'critical weight' and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. J Insect Physiol. 2001; 47(11): 1261-1267.
101. Zhan L, Cao W, Chu C, Jiang B, Zhang F, Fang L, Habbema JD. Tick-borne Agents in Rodents, China. Emerg Infect Dis. 2009; 15(12): 1904-1908.
102. Hu Y, Zhang J, Yang S, Wang H, Zeng H, Zhang T, Liu J. Screening and molecular cloning of a protective antigen from the midgut of Haemaphysalis longicornis. Korean J Parasitol. 2013; 51(3): 327-334.
103. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein with adjuvant. Lyme disease vaccine study group. New England J Med. 1998; 339: 209-215.
104. Abbott A. Lyme disease: uphill struggle. Nature. 2006; 439.
105. Hovius JW, Ramamoorthi N, Van’t Veer C, De Groot KA, Nijhof AM, Jongejan F, et al. Identification of Salp15 homologues in Ixodes ricinus ticks. Vector-Borne Zoonot Dis. 2007; 7: 296-303.
106. Almazan C, Tipacamu GA, Rodriguez S, Mosqueda J, Perez de Leon A. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front Biosci. 2018; 23: 1535-1551.
107. Merino O, Antunes S, Mosqueda J, Moreno-Cid JA, Pérez de la Lastra JM. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013; 31(49): 5889-5896.
108. Nijhof AM, Balk JA, Postigo M, Rhebergen AM, Taoufik A, Jongejan F. Bm86 homologues and novel ataq proteins with multiple epidermal growth factor (egf )-like domainsfrom hard and soft ticks. Int J Parasitol. 2010; 40: 1587-1597.
109. Yang X, Koči J, Smith AA, Zhuang X, Sharma K, Dutta S, Rana VS. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell Microbiol. 2021; 23(2): e13275.
110. Kumar A, Garg R, Yadav CL, Vatsya S, Kumar RR, Sugumar P, et al. Immune responses against recombinant tick antigen, Bm95, for the control of Rhipicephalus (Boophilus) microplus ticks in cattle. Vet Parasitol. 2009; 165(1-2): 119-124.
111. Kasaija PD, Contreras M, Kabi F, Mugerwa S, de la Fuente J. Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in Bosindicus and Crossbred Cattle in Uganda. Vaccines. 2020; 8(2): 319.
112. Canales M, Labruna MB, Soares JF, Prudencio CR, de la Fuente J. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations. Vaccine. 2009 7(52): 7244-7248.
113. Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold. Sci Rep. 2018; 8(1): 11409.
114. Pacheco I, Prado E, Artigas-Jerónimo S, Lima-Barbero JF, de la Fuente G, Antunes S, et al. Comparative analysis of Rhipicephalus tick salivary gland and cement elementome. Heliyon. 2021; 7(4): e06721.
115. Lee SH, Li J, Moumouni PFA. Subolesin vaccination inhibits blood feeding and reproduction of Haemaphysalis longicornis in rabbits. Parasites Vectors. 2020; 13: 478.
116. Kim TK, Radulovic Z, Mulenga A. Target validation of highly conserved Amblyommaamericanum tick saliva serine protease inhibitor 19. Ticks Tick Borne Dis. 2016; 7(3): 405-414.
117. Torina A, Moreno-Cid JA, Blanda V, Fernández de Mera IG, de la Lastra JM. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasit Vectors. 2014; 7: 10.
118. Taank V, Dutta S, Dasgupta A, Steeves TK, Fish D, Anderson JF, et al. Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and tryptophan pathway for its survival in ticks. Sci Rep. 2017; 7(1): 13256.
119. Taank V, Ramasamy E, Sultana H, Neelakanta G. An efficient microinjection method to generate human anaplasmosis agent Anaplasma phagocytophilum-infected ticks. Sci Rep. 2020; 10(1): 15994.
120. Regmi P, Khanal S, Neelakanta G, Sultana H. Tick-Borne Flavivirus Inhibits Sphingomyelinase (IsSMase), a Venomous Spider Ortholog to Increase Sphingomyelin Lipid Levels for Its Survival in Ixodes scapularis Ticks. Front Cell Infect Microbiol. 2020; 10:244.
121. Mans BJ. Chemical Equilibrium at the Tick-Host Feeding Interface: A Critical Examination of Biological Relevance in Hematophagous Behavior. Front Physiol. 2019; 10: 530.
122. Ayllón N, Zweygarth E, Passos LM, Broniszewska M, Villar M, Kocan KM, et al. Molecular and immunological characterization of three strains of Anaplasma marginale grown in cultured tick cells. Ticks Tick Borne Dis. 2015; 6(4): 522-529.
123. Vandegrift KJ, Kapoor A. The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health. Viruses. 2019; 11(6): 529.
124. Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol. 2017; 7: 281.
125. Park JM, Oliva Chávez AS, Shaw DK. Ticks: More Than Just a Pathogen Delivery Service. Front Cell Infect Microbiol. 2021; 11: 739419.
126. Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health. 2014; 2: 251.
127. Eisen RJ, Eisen L. The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern. Trends Parasitol. 2018; 34(4): 295-309.
Published
2022-03-26
How to Cite
(1)
Yadav, N.; Upadhyay, R. Tick Saliva Antigen-Based Vaccines, Disease Protection and Prophylaxis. European Journal of Biological Research 2022, 12, 77-101.
Section
Review Articles