A review on CRISPR-Cas9 and its role in cancer immunotherapy

  • Rashi A. Bhavsar The Oxford College of Science, Department of Biotechnology, #32, 19th Main, 17th ‘B’ Cross, Sector – 4, HSR Layout, Bengaluru – 560 102, Karnataka, India https://orcid.org/0000-0002-2218-7051
  • Vishwa Maharajan The Oxford College of Science, Department of Biotechnology, #32, 19th Main, 17th ‘B’ Cross, Sector – 4, HSR Layout, Bengaluru – 560 102, Karnataka, India https://orcid.org/0000-0003-1192-5853
  • Evan Joseph The Oxford College of Science, Department of Biotechnology, #32, 19th Main, 17th ‘B’ Cross, Sector – 4, HSR Layout, Bengaluru – 560 102, Karnataka, India https://orcid.org/0000-0002-0621-6799
  • Salai S. Sumukhi The Oxford College of Science, Department of Biotechnology, #32, 19th Main, 17th ‘B’ Cross, Sector – 4, HSR Layout, Bengaluru – 560 102, Karnataka, India https://orcid.org/0000-0001-7217-9386
  • Akshatha Banadka Christ Deemed-to-be University, Department of Life Sciences, Hosur Road, Bhavani Nagar, S. G. Palya, Bengaluru – 560 029, Karnataka, India https://orcid.org/0000-0003-4269-9617
  • Kokila Srinivasa The Oxford College of Science, Department of Biochemistry, #32, 19th Main, 17th ‘B’ Cross, Sector – 4, HSR Layout, Bengaluru – 560 102, Karnataka, India https://orcid.org/0000-0002-6673-3720
Keywords: CRISPR-Cas9, Genome, Cancer, Genetically-modified T-cells


Since the discovery of CRISPR, the field of Molecular Genetics has revolutionized and has opened so many different doors to improve molecular techniques and interpret the early microbial life forms. The diversity found within the CRISPR-Cas systems has led to its application in various fields like diagnostics, medicine and also has given rise to an interesting field of genome engineering. The Nobel Prize in Chemistry was awarded to Emanuelle Charpentier and Jennifer Doudna for their work on CRISPR-Cas9 and its application as a genome engineering tool. Scientists have been using the CRISPR-Cas9 system to edit genomes and cure various genetic diseases associated with mutations in the human genome. One such application is the use of CRISPR-Cas9 in cancer immunotherapy. The entire world has been known to be affected by the rapidly dividing cellular disease of cancer. Since cancer cells have different morphology, they are attacked by our immune system. Cancer cells possess the ability to camouflage themselves and avoid these immune responses and thereby proliferate and metastasize to a much greater extent. Scientists have been able to genetically engineer T-cells with the help of CRISPR-Cas9 genome editing tool which has shown promising results in the course of immunotherapy. On the 4th of June 2021, in India, the first patient underwent CAR-T Cell therapy setting a milestone for future treatments. In this review, we aim to evaluate the potential and diversity of the profound CRISPR-Cas systems and the application of CRISPR-Cas9 in immunotherapy for refractory cancer.

DOI: http://dx.doi.org/10.5281/zenodo.5527223


Download data is not yet available.


1. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987; 169(12): 5429-5433.
2. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018; 200(7): e00580-617.
3. Han W, She Q. CRISPR history: Discovery, characterization, and prosperity. Prog Mol Biol Transl. 2017; 152: 1-21.
4. Barrangou R. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315(5819): 1709-1712.
5. Liang P, Zhang X, Chen Y, Huang J. Developmental history and application of CRISPR in human disease. J Gene Med. 2017; 19: 6-7.
6. Javed MR. CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms. Curr Microbiol. 2018; 75(12): 1675-1683.
7. Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 2015; 1311: 47-75.
8. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015: 13(11): 722-736.
9. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017; 37: 67-78.
10. van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev. 1998; 62(2): 275-293.
11. Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015; 526(7571): 55-61.
12. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008; 321(5891): 960-964.
13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821.
14. Jiang F, Doudna JA. CRISPR–Cas9 Structures and Mechanisms. Annu Rev Biophys. 2017; 46(1): 505-529.
15. Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Ghosh D. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci. 2019; 232: 116636.
16. Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014; 513(7519): 569-573.
17. Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, McCammon JA. Key role of the REC lobe during CRISPR-Cas9 activation by “sensing”, “regulating”, and “locking” the catalytic HNH domain. Q Rev Biophys. 2018; 51: e9.
18. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015; 163(3): 759-771.
19. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 2009; 139(5): 945-956.
20. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014; 12(7): 479-492.
21. Yang W. An equivalent metal ion in one- and two-metal-ion catalysis. Nat Struct Mol Biol. 2008; 15(11): 1228-1231.
22. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014; 507(7490): 62-67.
23. Tang X-D, Gao F, Liu M-J, Fan Q-L, Chen D-K, Ma W-T. Methods for enhancing clustered regularly interspaced short palindromic repeats/Cas9-mediated homology-directed repair efficiency. Front Genet. 2019; 10: 551.
24. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010; 79(1): 181-211.
25. Ray, U., & Raghavan, S. C. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene. 2020; 39(41):6393–6405.
26. Salsman J, Dellaire G. Precision genome editing in the CRISPR era. Biochem Cell Biol. 2017; 95(2): 187-201.
27. Weinberg RA. How cancer arises. Sci Am. 1996; 275(3): 62-70.
28. Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D, Jain RK. Malignant cells facilitate lung metastasis by bringing their own soil. PNAS. 2010; 107(50): 21677-21682.
29. Joseph E, Praveena EA, Fatma S. Non-small cell lung cancer and necroptosis as a Potential Biomarker. Recent Advances and Current Trends in Chemical and Life Sciences, Immortal publications, 2021.
30. Kalyanaraman B. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017; 12: 833-842.
31. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009; 9(3): 153-166.
32. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006; 127(4): 679-695.
33. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997; 80(S8): 1529-1537.
34. Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009; 1796(2): 293-308.
35. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Sarkar S. EMT and tumor metastasis. Clin Transl Med. 2015; 4(1): 6.
36. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141(1): 52-67.
37. Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003; 3(6): 453-458.
38. Fidler IJ, Poste G. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008; 9(8): 808.
39. Mathot L, Stenninger J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci. 2012; 103(4): 626-631.
40. Croce CM. Oncogenes and cancer. N Engl J Med. 2008; 358(5): 502-511.
41. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myconc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. PNAS. 1982; 79(24): 7824-7827.
42. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985; 315(6020): 550-554.
43. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001; 20(19): 2390-2400.
44. Peterson CL, Workman JL. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev. 2000; 10(2): 187-192.
45. Jenuwein T, Allis CD. Translating the histone code. Science. 2001; 293(5532): 1074-1080.
46. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta Rev Cancer. 2003; 1653(1): 1-24.
47. Pawson T, Warner N. Oncogenic re-wiring of cellular signaling pathways. Oncogene. 2007; 26(9): 1268-1275.
48. Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem. 1991; 60(1): 349-400.
49. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985; 228(4706): 1440-1443.
50. Bishop JM. Molecular themes in oncogenesis. Cell. 1991; 64(2): 235-248.
51. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun X-W, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310(5748): 644-648.
52. Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018; 18(10): 635-647.
53. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1): 1-10.
54. Finn OJ. Cancer immunology. N Engl J Med. 2008; 358(25): 2704-2715.
55. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, June C. H.CRISPR-engineered T cells in patients with refractory cancer. Science. 2020; 367(6481): 7365.
56. Kaushik I, Ramachandran S, Srivastava SK. CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment. Semin Cell Dev Biol. 2019; 96: 4-12.
57. Miliotou AN, Papadopoulou LC. CAR T-cell therapy: A New Era in cancer immunotherapy. Curr Pharm Biotechnol. 2018; 19(1): 5-18.
58. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017; 10(1): 53.
59. Karpiński TM, Szkaradkiewicz AK. Anti-cancer peptides from bacteria. Bangladesh J Pharmacol. 2013; 8(3): 343-348.
60. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011; 11: 849-864.
How to Cite
Bhavsar, R.; Maharajan, V.; Joseph, E.; Sumukhi, S.; Banadka, A.; Srinivasa, K. A Review on CRISPR-Cas9 and Its Role in Cancer Immunotherapy. European Journal of Biological Research 2021, 11, 458-479.
Review Articles