Polyhexanide (PHMB) – properties and applications in medicine

  • Patrycja Szkołuda Student Scientific Club of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712, Poznań, Poland
  • Tomasz M. Karpiński Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712, Poznań, Poland https://orcid.org/0000-0001-6599-9204
Keywords: Polyhexanide, PHMB, Polyhexamethylene biguanide, Antiseptic, Antimicrobial, Wound

Abstract

Polyhexamethylene biguanide (PHMB) is one of the many antiseptics available in the medicine. It stands out from the others with its numerous advantages. It has a low toxicity factor, chemical stability, and bactericidal effect on most microorganisms. PHMB is used in many areas of medicine, veterinary medicine, gastronomy, and industry. The application of polyhexanide in the treatment of chronic wounds allows for fast regeneration and reduced time of wound treatment and hospitalization. According to the Recommendations of the Polish Wound Treatment Society, PHMB is recommended in treatment of critically colonized wounds, wounds at risk infection, burns, and decontamination of acute and chronic wounds, and as second choice in infected wounds.

DOI: http://dx.doi.org/10.5281/zenodo.3956819

Downloads

Download data is not yet available.

References

1. Lindholm C, Searle R. Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J. 2016; 13 Suppl 2: 5-15.

2. Sopata M, Jawień A, Mrozikiewicz-Rakowska B, Augusewicz Z, Bakowska M, Samson I, et al. Wytyczne postępowania miejscowego w ranach niezakażonych, zagrożonych infekcją oraz zakażonych – przegląd dostępnych substancji przeciwdrobnoustrojowych stosowanych w leczeniu ran. Zalecenia Polskiego Towarzystwa Leczenia Ran. Leczenie Ran. 2020; 17: 1-21.

3. Karpiński TM. Efficacy of octenidine against Pseudomonas aeruginosa strains. Eur J Biol Res. 2019; 9: 135-140.

4. De Paula GF, Netto GI, Mattoso LHC. Physical and chemical characterization of poly(hexamethylene biguanide) hydrochloride. Polymers. 2011; 3: 928-941.

5. Kaehn K. Polihexanide: a safe and highly effective biocide. Skin Pharmacol Physiol. 2010; 23 Suppl: 7-16.

6. Commission Regulation (EU) No 944/2013 of 2 October 2013 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixturesText with EEA relevance. Off J Eur Union. 2013; L 261/5: 5-22.

7. Commission Regulation (EU) 2019/831 of 22 May 2019 amending Annexes II, III and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products (Text with EEA relevance.). Off J Eur Union. 2019; L 137/29: 29-63.

8. Safety Assessment of Polyaminopropyl Biguanide as Used in Cosmetics. Status: Scientific Literature Review for Public Comment. Cosmetic Ingredient Review, Washington DC, USA. 2017.

9. Opinion on Polyaminopropyl Biguanide (PHMB) - Submission III. Scientific Committee on Consumer Safety. 2017; SCCS/1581/16: 90.

10. Commission Implementing Decision (EU) 2016/109 of 27 January 2016 not to approve PHMB (1600; 1.8) as an existing active substance for use in biocidal products for product-types 1, 6 and 9 (Text with EEA relevance). Off J Eur Union. 2016; L 21/84: 84-85.

11. Commission Implementing Decision (EU) 2018/619 of 20 April 2018 not approving PHMB (1415; 4.7) as an existing active substance for use in biocidal products of product-types 1, 5 and 6 (Text with EEA relevance. ). Off J Eur Union. 2018; L 102/21: 21-22.

12. Olivieri J, Eigenmann PA, Hauser C. Severe anaphylaxis to a new disinfectant: polyhexanide, a chlorhexidine polymer. Schweiz Med Wochenschr. 1998; 128: 1508-1511.

13. Kautz O, Schumann H, Degerbeck F, Venemalm L, Jakob T. Severe anaphylaxis to the antiseptic polyhexanide. Allergy. 2010; 65: 1068-1070.

14. Kim Y-S, Cha H, Kim H-J, Cho J-M, Kim H-R. The anti-fibrotic effects of CG-745, an HDAC inhibitor, in bleomycin and PHMG-induced mouse models. Mol Basel Switz. 2019; 24: 2792.

15. Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, et al. Consensus on wound antisepsis: Update 2018. Skin Pharmacol Physiol. 2018; 31: 28-58.

16. Broxton P, Woodcock PM, Heatley F, Gilbert P. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J Appl Bacteriol. 1984; 57: 115-124.

17. Renzoni A, Von Dach E, Landelle C, Diene SM, Manzano C, Gonzales R, et al. Impact of exposure of methicillin-resistant Staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrob Agents Chemother. 2017; 61: e00272-17.

18. Ince A, Schütze N, Hendrich C, Jakob F, Eulert J, Löhr JF. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly. 2007; 137: 139-145.

19. Welk A, Splieth CH, Schmidt-Martens G, Schwahn C, Kocher T, Kramer A, et al. The effect of a polyhexamethylene biguanide mouthrinse compared with a triclosan rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque re-growth. J Clin Periodontol. 2005; 32: 499-505.

20. Küsters M, Beyer S, Kutscher S, Schlesinger H, Gerhartz M. Rapid, simple and stability-indicating determination of polyhexamethylene biguanide in liquid and gel-like dosage forms by liquid chromatography with diode-array detection J Pharm Anal. 2013; 3(6): 408-414.

21. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015; 4: 560-582.

22. Daeschlein G, Assadian O, Bruck JC, Meinl C, Kramer A, Koch S. Feasibility and clinical applicability of polihexanide for treatment of second-degree burn wounds. Skin Pharmacol Physiol. 2007; 20: 292-296.

23. Durante CM, Greco A, Sidoli O, Maino C, Gallarini A, Ciprandi G. Evaluation of the effectiveness of a polyhexanide and propyl betaine-based gel in the treatment of chronic wounds. Minerva Chir. 2014; 69: 283-292.

24. Lintzeris D, Vernon K, Percise H, Strickland A, Yarrow K, White A, et al. Effect of a new purified collagen matrix with polyhexamethylene biguanide on recalcitrant wounds of various etiologies: a case series. Wounds Compend Clin Res Pract. 2018; 30: 72-78.

25. Ceri M, Yilmaz SR, Unverdi S, Kurultak I, Duranay M. Effect of local polyhexanide application in preventing exit-site infection and peritonitis: a randomized controlled trial. Ther Apher Dial. 2020; 24: 81-84.

26. Hansmann F, Kramer A, Ohgke H, Strobel H, Müller M, Geerling G. [Polyhexamethylbiguanid (PHMB) as preoperative antiseptic for cataract surgery]. Ophthalmologe. 2004; 101: 377-383.

27. Cho P, Boost MV. Evaluation of prevention and disruption of biofilm in contact lens cases. Ophthalmic Physiol Opt. 2019; 39: 337-349.

28. Dong W, Chen R, Lin Y-T, Huang Z-X, Bao G-J, He X-Y. A novel zinc oxide eugenol modified by polyhexamethylene biguanide: Physical and antimicrobial properties. Dent Mater J. 2020; 39: 200-205.

29. Dittmann K, Schmidt T, Müller G, Cuny C, Holtfreter S, Troitzsch D, et al. Susceptibility of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to chlorhexidine digluconate, octenidine dihydrochloride, polyhexanide, PVP-iodine and triclosan in comparison to hospital-acquired MRSA (HA-MRSA) and community-aquired MRSA (CA-MRSA): a standardized comparison. Antimicrob Resist Infect Control. 2019; 8: 122.

30. Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother. 2010; 65: 1712-1719.

31. Müller G, Kramer A. Effect of selected wound antiseptics on adult articular cartilage (bovine sesamoid bone) in the presence of Escherichia coli and Staphylococcus aureus. J Orthop Res. 2005; 23: 127-133.

32. Schedler K, Assadian O, Brautferger U, Müller G, Koburger T, Classen S, et al. Proposed phase 2/ step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis. 2017; 17: 143.

33. Radischat N, Augustin M, Herberger K, Wille A, Goroncy-Bermes P. Influence of human wound exudate on the bactericidal efficacy of antiseptic agents in quantitative suspension tests on the basis of European Standards (DIN EN 13727). Int Wound J. 2020; 17: 781-789.

34. Hübner N-O, Matthes R, Koban I, Rändler C, Müller G, Bender C, et al. Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol. 2010; 23 Suppl: 28-34.

35. Medvedec Mikić I, Cigić L, Kero D, Kalibović Govorko D, Prpić Mehičić G, Prpić Mehičić G, et al. Antimicrobial effectiveness of polyhexamethylene biguanide on Enterococcus faecalis, Staphylococcus epidermidis and Candida albicans. Med Glas. 2018; 15(2): 132-138.

36. Firdessa R, Good L, Amstalden MC, Chindera K, Kamaruzzaman NF, Schultheis M, et al. Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB). PLoS Negl Trop Dis. 2015; 9: e0004041.

37. Sudano Roccaro A, Asero A. An original use of a bioluminescence assay to test the in vitro efficacy of polihexanide in the eradication of Acanthamoeba cysts. Cornea. 2020; 39: 892-897.

38. Yabes JM, White BK, Murray CK, Sanchez CJ, Mende K, Beckius ML, et al. In vitro activity of Manuka honey and polyhexamethylene biguanide on filamentous fungi and toxicity to human cell lines. Med Mycol. 2017; 55: 334-343.
Published
2020-06-06
Section
Review Articles