Determination of total phenolic content, total flavonoid content and total antioxidant capacity in some endemic Sideritis L. (Lamiaceae) species grown in Turkey
Abstract
In this study, total phenolic, total flavonoid and antioxidant activities of the some endemic species Sideritis rubriflora Hub.-Mor., Sideritis libanotica Labill. subsp. violascens (P.H.Davis) P.H.Davis, Sideritis erythrantha Boıss. Et Heldr. Apus Bentham var. cedretorum P.H.Davis, Sideritis congesta P. H. Davis Et Hub.-Mor., Sideritis brevidens P.H.Davis and Sideritis vuralii H. Duman Et Başer, which were collected from Anamur district of Mersin province in Turkey, were analyzed. Total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant capacity (DPPH), (ABTS), (FRAP) of the ground surface parts were evaluated. As a result of the study, the highest TPC value was observed in S. erythrantha subsp. cedretorum and S. rubriflora extracts as being 366.9 and 328.3 mg/g DW, respectively; the highest TFC value was observed in S. rubriflora extract as being 155.7 mg/g; the highest DPPH radical scavenging activity was observed in S. congesta and S. brevidens extracts as being 39.1% and 38.9%, respectively; the highest ABTS radical scavenging activity was observed in S. erythrantha subsp. cedretorum and S. rubriflora extracts as being 54.9% and 51.9%, respectively; the highest FRAP value was observed in S. libanotica subsp. violascens extract as being 1500.2 µmol/g. In the light of the acquired findings, it is suggested that Sideritis species used in the study can be used as a possible natural source in the pharmaceutical and food industries.
Downloads
References
2. Başköse İ, Dural H. The flora of Hasan (Aksaray Region, Turkey) mountain. Biodicon. 2011; 4(2); 125-148.
3. Marchioni I, Najar B, Ruffoni B, Copetta A, Pistelli L, Pistelli L. Bioactive compounds and aroma profile of some Lamiaceae edible flowers. Plants. 2020; 9(6); 691.
4. Ahmed SM. Molecular identification of Lavendula dentata L., Mentha longifolia (L.) Huds. And Mentha × piperita L. by DNA barcodes. BJPT. 2018; 25(2); 149-157.
5. Nieto G. Biological activities of three essential oils of the Lamiaceae family. Medicines. 2017; 4(3): 63.
6. Retta DS, González SB, Guerra PE, van Baren CM, DiLeo Lira P, Bandoni AL. Essential oils of native and naturalized Lamiaceae species growing in the Patagonia region (Argentina). J Essent Oil Res. 2017; 29(1); 64-75.
7. Kaya MD, Kulan EG, Gümüşçü G, Gümüşçü A. Factors Affecting Germination Performance of Four Endemic Sideritis Species in Turkey. J Agric Sci. 2015; 21(3); 406-413.
8. Shtereva LA, Vassilevska-Ivanova RD, Kraptchev BV. In vitro cultures for micropropagation, mass multiplication and preservation of an endangered medicinal plant Sideritis scardica Griseb. Botanica Serb. 2015; 39(2); 111-120.
9. Kalivas A, Ganopoulos I, Xanthopoulou A, Chatzopoulou P, Tsaftaris A, Madesis P. DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece. Mol Biol Rep. 2014; 41(8); 5147-5155.
10. Kılıç Ö, Bağcı E, Doğan G, Yüce E, Hayta Ş, Demirpolat A, Eser S. Essential Oil Composition of Endemic Sideritis dichotoma Huter (Lamiaceae) From Turkey. Bilecik Şeyh Edebali Üniv. Fen Bilim. Derg. 2014; 1(2);55-58
11. Özkan G, Sagdiç O, Özcan M, Özçelik H, Ünver A. Antioxidant and antibacterial activities of Turkish endemic Sideritis extracts. Grasasy Aceites. 2005; 56(1); 16-20.
12. Güvenç A, Duman H. Morphological and anatomical studies of annual taxa of Sideritis L. (Lamiaceae), with notes on chorology in Turkey. Turk J Bot. 2010; 34(2); 83-104
13. Güvenç A, Houghton PJ, Duman,H, Coşkun M, Şahin P. Antioxidant activity studies on selected Sideritis. species native to Turkey. Pharm Biol. 2005; 43(2); 173-177.
14. Topcu Ş, Çölgeçen H. Bitki sekonder metabolitlerinin biyoreaktörlerde üretilmesi. Türk Bilimsel Derlemeler Dergisi. 2015; 8(2); 9-29.
15. Küçükboyacı N, Hürkul MM, Köroğlu A, Vural M. A preliminary study on the antioxidant activity of Origanum haussknechtii Boiss. Turk J Pharm Sci. 2014; 11(3); 355-360.
16. Zhang L, Tu Z, Yuan T, Wang H, Xie X, Fu Z. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chem. 2016; 208; 61-67.
17. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scient World J. 2013; 2013; 1-1615.
18. Spanos GA, Wrolstad RE. Phenolic of apple, pear and white grape juices and their changes with processing and storage. J Agric Food Chem. 1992; 40(9): 1478-1487.
19. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet J, Luyck M, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000; 72; 35-42.
20. Rezaeirad D, Bakhshi D, Ghasemnezhad M, Lahiji HS. Evaluation of some quantitative and qualitative characteristics of local pears (Pyrus sp.) in the North of Iran. IJCAS. 2013; 5(8); 882-887.
21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9-10); 1231-1237.
22. Benzie IFF, Strain JJ. The ferric reducing Ability of plasma (FRAB) as a measure of “Antioxidant power”: The FRAB assay. Anal Biochem. 1996; 239; 70-76.
23. Aydin S. Total phenolic content, antioxidant, antibacterial and antifungal activities, FT-IR analyses of Brassica oleracea L. var. acephala and Ornithogalum umbellatum L. Genetika. 2020; 52(1); 229-244.
24. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011; 8(1); 1-10.
25. Çağlar MY, Demirci M. Phenolic compounds in berry fruits and their importance in nutrition. EJOSAT. 2017; 7(11); 18-26.
26. Arion CM, Tabart J, Kevers C, Niculaua M, Filimon R, Beceanu D, Dommes J. Antioxidant potential of different plum cultivars during storage. Food Chem. 2014; 146; 485-491.
27. Gökbulut A, Yazgan AN, Duman H, Yilmaz BS. Evaluation of the antioxidant potential and chlorogenic acid contents of three endemic Sideritis taxa from Turkey. FABAD J Pharm Sci. 2017; 42(2); 81-86.
28. Radojevic ID, Stankovic MS, Stefanovic OD, Topuzovic MD, Comic LR. Antioxidative and antimicrobial properties of different extracts from Sideritis montana L., Rom. Biotechnol Lett. 2012; 17(2); 7160-7168.
29. Tadić VM, Jeremic I, Dobric S, Isakovic A, Markovic I, Trajkovic V, Arsic I. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts. Planta Med. 2012; 78(05); 415-427.
30. Alipieva K, Petreska J, Gil-Izquierdo Á, Stefova M, Evstatieva L, Bankova, V. Influence of the extraction method on the yield of flavonoids and phenolics from Sideritis spp. (Pirin Mountain tea). Nat Prod Commun. 2010; 5(1); 51-54.
31. Nakiboglu M, Urek RO, Kayali HA, Tarhan L. Antioxidant capacities of endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem. 2007; 104(2): 630-635.
32. Tunalier Z, Kosar M, Ozturk N, Baser KHC, Duman H, Kirimer N. Antioxidant properties and phenolic composition of Sideritis species. Chem Nat Comp. 2004; 40(3); 206-210.
33. Sagdic O, Aksoy A, Ozkan G, Ekici L, Albayrak S. Biological activities of the extracts of two endemic Sideritis species in Turkey. IFSET. 2008; 9(1); 80-84.
34. Koleva II, Linssen JPH, van Beek TA, Evstatieva LN, Kortenska V, Handjieva N. Antioxidant activity screening of extracts from Sideritis species (Labiatae) grown in Bulgaria. J Sci Food Agric. 2003; 83: 809-819.


This work is licensed under a Creative Commons Attribution 4.0 International License.