Antimicrobial activity of dried fig (Ficus carica L.) extracts from the region of Mascara (Western Algeria) on Enterobacter cloacae identified by MALDI-TOF/MS

  • Benmaghnia Souhila Bioconversion, Microbiological Engineering and Health Safety, SNV Faculty, Mascara University, Algeria
  • Boukhannoufa Asma Bioconversion, Microbiological Engineering and Health Safety, SNV Faculty, Mascara University, Algeria
  • Meddah Boumediene Bioconversion, Microbiological Engineering and Health Safety, SNV Faculty, Mascara University, Algeria; Equipe Thera., Laboratoire des glucides- FRE-CNRS 3517, UFR de Pharmacie, Université de Picardie, Amiens, France
  • Tir-Touil Aicha Bioconversion, Microbiological Engineering and Health Safety, SNV Faculty, Mascara University, Algeria
Keywords: Enterobacter cloacae, Ficus carica, Antimicrobial activity, Dried figs, MIC, MBC


Enterobacter cloacae is currently known as a urinary tract infection agent, especially in hospitals recognized by its resistance to 3rd generation cephalosporin’s, which makes it a target for different works in order to find natural and definitive means of fight and treatment. Their limited biochemical reactivity and their different morphotypes is a real obstacle to their identification by conventional phenotypic means. 16S rRNA and 18S rRNA gene sequencing is highly successful for bacterial identification. However, in recent years, matrix-assisted laser desorption ionization time in flight mass spectrometry (MALDI-TOF MS) has emerged as a very valid technique for the identification and diagnosis of microorganisms. Our study aims to identify three bacteria belonging to the Enterobacter cloacae species isolated from various environments by the MALDI-TOF/MS method and then to study their antimicrobial activity against some extracts of dried figs of Ficus carica fruits grown in the mascara region (western Algeria). The determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) shows a significant inhibition of the activity of E. cloacae by the methanolic extract of El-Keurt variety at 2.34 mg/ml of extract. This study seems to give good guidance for the use of dried figs against Enterobacter infections.



Download data is not yet available.


1. Emberger L. Une classification biogéographique des climats. Recherches et Travaux des Laboratoires de Géologie, Botanique et Zoologie, Faculté des Sciences Montpellier [in French]. 1966; 7: 1-43.
2. Bouakkaz S. Métabolites secondaires du figuier Ficus carica L., Isolement, identification structurale, dosage par HPLC couplée à la spectrométrie de masse et activités biologiques [in French]. Thèse de doctorat en sciences de la chimie. Université de Guelma. 2013.
3. Ambika C, Intelli. Role of Ficus carica in medicine – a review. Int J Interdisc Res. 2014; 1(6): 1-6.
4. Guarrera PM. Food medicine and minor nourishment in the folk traditions of central Italy (Marche, Abruzzo and Latinum). Fitoterapia. 2003; 74: 515-544.
5. Cansaran A, Kaya OF. Contributions of the ethnobotanical investigation carried out in Amasya district of Turkey (Amasya-Center, Baglarüstü, Bogaköy and Vermis villages; Yssiçal and Ziyaret towns). (Biodicon). Biol Diver Concert. 2010; 3: 97-116.
6. Tenover FC. Mechanisms of Antimicrobial Resistance in Bacteria. Am J Med. 2006; 119(6A): 3-10.
7. Riegel P, de Briel D, Dauwalder O. Automatisation de l’identification bactérienne [in French]. Francophone LaboRatoiRes. 2016; 482: 39-45.
8. Neelja S, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015; 6: 791.
9. Guérin F. Infections à Enterobacter cloacae complex: résistance aux antibiotiques et traitement Infections caused by Enterobacter cloacae complex: Antibiotic resistance and treatment [in French]. J Anti-infect. 2015; 17(3): 79-89.
10. Jasmin R, Manikanda K. Evaluating the effeciency of Ficus carica fruits agains a few drugs resistant bacterial pathogens. World J Pharm Pharm Sci. 2014; 3(2): 1394-1400.
11. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966; 45(4):493-496.
12. Luilma AG, Sidrimb JJC, Domingos TM, Cechinel VF, Vietla SR. In vitro antifungal activity of dragon’s blood from Croton urucurana against dermatophytes. J Ethnopharmacol. 2005; 97(2): 409-412.
13. Chanda S, Kaneria M. Indian nutraceutical plant leaves as a potential source of natural antimicrobial agents. Science against microbial pathogens: communicating current research and technological advances. 2011: 1251-1259.
14. Neha S, Mehta S, Satpathy G, Gupta RK. Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). J Pharmacogn Phytochem. 2014; 3(2): 158-165.
15. Mitscher LA, Leu RP, Bathala MS, Wu WN, Beal JL. Antimicrobial agents from higher plants.
I. Introduction, rational and methodology. Lloydia. 1972; 35: 157-166.
16. Bassolea IHN, Ouattaraa AS, Nebieb R, Ouattaraa CAT, Kaborec ZI, Traorea SA. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry. 2003; 62(2): 209-223.
17. Lazreg Aref H, Bel Hadj Salah K, Chaumont JP, Fekih AW, Aouni M, Said K. In vitro antimicrobial activity of four Ficus carica latex Fractions against resistant human pathogens (antimicrobial activity of Ficus carica latex). Pak J Pharm Sci. 2010; 23(1): 53-58.
18. Jeong MR, Kim YH, Cha JD. Antimicrobial Activity of Methanol Extract from Ficus carica Leaves Against Oral Bacteria. J Bacteriol Virol. 2009; 39(2): 97-102.
19. Climo MW, Patron RL, Archer GL. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin. Antimicrob Agents Chemother. 1999; 43: 1747-1753.
20. Louardi M. Applications de la spectrométrie de masse type MALDI-TOF à la bactériologie et à la distinction de variantes génétiques. Thèse de doctorat en Recherche clinique et innovation technologique [in French]. 2012. Strasbourg.
21. Patel R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin Chem. 2015; 61(1): 1-12.
22. Suarez S. Microbiologie clinique et spectrométrie de masse [in French]. Médecine humaine et pathologie. Université René Descartes - Paris V. 2013.
23. Moussaoui-khadem N. Mise au point d’une émulsion multiple à base d’insuline: appréciation de l’effet protecteur lors de l’administration orale [in French]. Thèse de doctorat en pharmacie médicales. Université Ahmed Ben Bella Oran-Algérie. 2013.
24. Cariello C. La spectrométrie de masse MALDI-TOF et le diagnostic microbiologique [in French]. Travail de diplôme. CHV, Laboratoire de microbiologie, Sion. 2012.
25. Benmaghnia S, Meddah B, Tir-Touil A, Gabaldón Hernández JA. Phytochemical analysis, antioxidant and antimicrobial activities of three samples of dried figs (Ficus carica L.) From the region of Mascara (western Algeria). J Microbiol Biotech Food Sci. 2019; 9(2): 208-215.
26. Lawal IO, Borokini TI, Oyeleye A, Williams OA, Olayemi JO. Evaluation of Extract of Ficus Exasperata Vahl Root Bark for Antimicrobial Activities Against Some Strains of Clinical Isolates of Bacterial and Fungi. Int J Mod Bot. 2012; 2(1): 6-12.
27. Edeoga HO, Okwu DE, Oyedemi BM. Phytochemical constituents of some Nigerian Medicinal Plants. Afr J Biotechnol. 2005; 4(7): 685-688.
28. Shahabinejad S, Kariminik A. Antibacterial activity of methanol extract of Lawsonia inermis against uropathogenic bacteria. MicroMedicine. 2019; 7(2): 31-36.
29. Sinem A, Ayşegül C. Antimicrobial and antioxidant potentials, total phenolic contents of some herbal waters. Eur J Biol Res. 2021; 11(2): 203-211.
30. Mellmann A, Bielaszewska M, Köck R, Friedrich AW, Fruth A, Middendorf B, et al. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis. 2008; 14(8): 1287-1290.
31. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, et al. Evaluation of Matrix-Assisted Laser Desorption Ionization–Time-of-Flight Mass Spectrometry in Comparison to 16S rRNA Gene Sequencing for Species Identification of Nonfermenting Bacteria. J Clin Microbiol. 2008; 46(6): 1946-1954.
32. Mbakwem-Aniebo C, Onianwa O, Okonko IO. Effects of Ficus Exasperata Vahl on Common Dermatophytes and Causative Agent of Pityriasis Versicolor in Rivers State, Nigeria. Am J Dermatol Vener. 2012; 1(1): 1-5.
33. Cakir A, Kordali S, Zengin H, Izumi S, Hirata T. Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour Fragr J. 2004; 19: 62-68.
34. Ayodele AE, Odusole OI, Adekanmbi AO. Phytochemical screening and in-vitro antibacterial activity of leaf extracts of Justicia secunda Vahl on selected clinical pathogens. MicroMedicine. 2020; 8(2): 46-54.
35. Léopold TN, Jazet Dongmo PM, Ngassoum M, Mbofung CMF. Investigations on the essential oil of Lippia rugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus Link ex. Fries. Food Control. 2009; 20(2): 161-166.
36. Yéhouénou B, Noudogbessi JP, Sessou P, Avlessi F, Sohounhloué D. Etude chimique et activités antimicrobiennes d’extraits volatils des feuilles et fruits de Xylopia aethiopica (DUNAL). In: Richard A. (ed.) contre les pathogènes des denrées alimentaires [in French]. J Soc Ouest-Afr Chim. 2010; 29: 19-27.
37. Hosainzadegan H, Alizadeh M, Karimi F, Pakzad P. Study of antibacterial effects of ripped and raw fig alone and in combination. J Med Plant Res. 2012; 6(14): 2864-2867.
How to Cite
Souhila, B.; Asma, B.; Boumediene, M.; Aicha, T.-T. Antimicrobial Activity of Dried Fig (Ficus Carica L.) Extracts from the Region of Mascara (Western Algeria) on Enterobacter Cloacae Identified by MALDI-TOF/MS. European Journal of Biological Research 2021, 11, 234-241.
Research Articles