Vitamins, omega-3, magnesium, manganese, and thyme can boost our immunity and protect against COVID-19

  • Afaf M. Hamada Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
Keywords: COVID-19, Vitamin B1, Vitamin C, Vitamin D, Vitamin E, Omega-3, Magnesium, Manganese, Thyme

Abstract

A new coronavirus, SARS-CoV-2, has been recognized as a cause of severe acute respiratory syndrome (SARS) and COVID-19 disease. In the absence of stable treatments for COVID-19, the possibility that vitamins: B1, C, D, and E, omega-3, minerals (magnesium and manganese), and herb thyme may have unspecified effects on infection with COVID-19 would be considered. Various reports have revealed that vitamins B1, C, D, and E, omega-3, magnesium, manganese, and thyme may affect the human innate system, for example, thiamine may play beneficial roles in human immunodeficiency viruses (HIV), treating megadose ascorbic acid can assist prevent cold and flu symptoms, vitamin D can decrease the risk of developing COVID-19, vitamin E has been evaluated against the influenza virus in mice, and omega-3 fatty acids supplementation has been efficient in reducing the severity and frequency of sickle cell rate. Magnesium may be effective in patients with a mutation in the interleukin-2-inducible T-cell kinase, as well as manganese associates with the metabolism of glucose and fats, vitamin C, and B, accelerating protein synthesis, endocrine regulation, stimulating hematopoiesis, improving innate function, and reducing reactive oxygen species (ROS) generation. Moreover, thyme extract can have beneficial antiviral effects against human papillomavirus (HPV) and influenza A (IAV). The possibility that the vitamins B1, C, D, E, omega-3, magnesium, manganese, and thyme appear to affect the human innate system warrants further study, especially in light of the recent COVID-19 epidemic.

DOI: http://dx.doi.org/10.5281/zenodo.3990659

Downloads

Download data is not yet available.

References

1. Williams AE. Basic concepts in immunology. In: Immunology: mucosal and body surface defences. Chichester, UK: John Wiley & Sons, Ltd; 2011: 1-19.

2. Koenderman L, Buurman W, Daha MR. The innate immune response. Immunol Lett. 2014; 162: 95-102.

3. Lamb TJ. Notes on the immune system. In: Lamb TJ, ed. Immunity to parasitic infection. Chichester, UK: John Wiley & Sons, Ltd; 2012: 13-57.

4. Williams AE. The innate immune system. In: Immunology: mucosal and body surface defences. Chichester, UK: John Wiley & Sons, Ltd; 2011: 20-40.

5. Lee JS, Bukhari SN, Fauzi NM. Effects of chalcone derivatives on players of the immune system. Drug Des Devel Ther. 2015; 9: 4761-4778.

6. Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005; 116: 241-249.

7. Beutler B. Innate immunity: An overview. Mol Immunol. 2004; 40: 845-859.

8. Pearce EJ, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013; 38: 633-643.

9. O'Rourke B. From bioblasts to mitochondria: ever expanding roles of mitochondria in cell physiology. Front Physiol. 2010; 1: 7.

10. Wa T, Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metabol. 2016; 27: 105-117.

11. Hamanaka RB, Chandel, S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010; 35: 505-513.

12. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012; 48: 158-167.

13. Kamiński MM, Röth D, Krammer PH, Gülow K. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp. 2013; 61: 367-384.

14. Rashida Gnanaprakasam JN, Wu R, Wang R. Metabolic reprogramming in modulating T cell reactive oxygen species generation and antioxidant capacity. Front Immunol. 2018; 9: 1075.

15. Tiku V, Tan MW, Dikic I. Mitochondrial functions in infection and immunity. Trends Cell Biol. 2020; 30: 263-275.

16. Reshi L, Wang H-V, Hong J-R. Modulation of mitochondria during viral infections. Mitoch Dis. 2018; 2018: 443.

17. Reshi L, Wang H-V, Hui CF, Su YC, Hong JR. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells. Fish Shellfish Immun. 2017; 61: 120-129.

18. Yoshizumi T, Ichinohe T, Sasaki O, Otera H, Kawabata S-I, Mihara K, et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun. 2014; 5: 4713.

19. Shi CS, Qi HY, Boularan C, Huang NN, Abu-Asab M, Shelhamer JH, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014; 193: 3080-3089.

20. Kim SJ, Ahn DG, Syed GH, Siddiqui A. The essential role of mitochondrial dynamics in antiviral immunity. Mitochondrion. 2018; 41: 21-27.

21. Liu J, Zheng X, Tong Q, Li W, Wang, B, Sutter, K, et al. Dittmer, D. Yang, Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020; 92: 491-494.

22. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020: doi: 10.1056/NEJMoa200203.

23. Boldogh I, Albrecht T, Porter DD. Persistent viral infections. In: Baron S, ed. Medical Microbiology, 4th edn. University of Texas Medical Branch at Galveston, Galveston, TX, 1996: 585-596.

24. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019; 9: 3160.

25. Donnino M. Gastrointestinal beriberi: a previously unrecognized syndrome. Ann Intern Med. 2004; 141: 898-899.

26. Funk C. The etiology of the deficiency. Anal Chim Acta. 1975; 76: 176-177.

27. Pourcel L, Moulin M, Fitzpatrick TB. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering. Front Plant Sci. 2013; 4: 160.

28. Frédérich M, Delvaux D, Gigliobianco T, Gangolf M, Dive G, Mazzucchelli G, et al. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. FEBS J. 2009; 276: 3256-3268.

29. Bettendorff L, Wirtzfeld B, Makarchikov AF, Mazzucchelli G, Frédérich M, Gigliobianco T, et al. Discovery of a natural thiamine adenine nucleotide. Nat Chem Biol. 2007; 3: 211-212.

30. Bettendorff L, Lakaye B, Kohn G, Wins P. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab Brain Dis. 2014; 29: 1069-1082.

31. Singer M. The role of mitochondrial dysfunction in sepsis-induced multiorgan failure. Virulence. 2014; 5: 66-72.

32. Shimon I, Almog S, Vered Z, Seligmann H, Shefi M, Peleg E, et al. Improved left ventricular function after thiamine supplementation in patients with congestive heart failure receiving long-term furosemide therapy. Am J Med. 1995; 98: 485-490.

33. Suter PM, Haller J, Hany A, Vetter W. Diuretic use: a risk for subclinical thiamine deficiency in elderly patients. J Nutr Health Aging. 2000; 4: 69-71.

34. Katta N, Balla S, Alpert MA. Does long-term furosemide therapy cause thiamine deficiency in patients with heart failure? A focused review. Am J Med. 2016; 129: 753.e7-753.e11.

35. Teigen LM, Twernbold DD, Miller WL. Prevalence of thiamine deficiency in a stable heart failure outpatient cohort on standard loop diuretic therapy. Clin Nutr. 2016; 35: 1323-1327.

36. Malecka SA, Poplawski K, Bilski B. Profilaktyczne i terapeutyczne zastosowanie tiaminy (witaminy B1) - nowe spojrzenie na stary lek. Wiad Lek. 2006; 59: 383-387.

37. Anderson P. Influenza, and viral resistance. https://www.advancedmedicaltherapies.com/influenza-viral-resistance/

38. Singleton CK, Martin PR. Molecular mechanisms of thiamine utilization. Curr Mol Med. 2001; 1: 197-207.

39. Combs GF. The Vitamins. Elsevier 2008: 265-280.

40. Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry 2014; 53: 821-835.

41. Mkrtchyan G, Aleshin V, Parkhomenko Y, Kaehne T, Di Salvo ML, Parroni A, et al. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci Rep. 2015; 5: 12583.

42. Luo’ng K, Nguyễn LT. The role of thiamine in HIV infection. Int J Infect Dis. 2013; 17: e221-e227.

43. Wallace AE, Weeks WB. Thiamine treatment of chronic hepatitis B infection. Am J Gastroenterol. 2001; 96: 864-868.

44. Lévy S, Hervé C, Delacoux E, Erlinger S. Thiamine deficiency in hepatitis C virus and alcohol-related liver diseases. Dig Dis Sci. 2002; 47: 543-548.

45. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock. Chest. 2017; 151: 1229-1238.

46. Smirnoff N, Conklin PL, Loewus FA. Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol. 2001; 52: 437.

47. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016; 22: 463-493.

48. Locato V, Cimini S, Gara LD. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front Plant Sci. 2013; 4: 152.

49. Lodge JK. Molecular actions of ascorbic acid. Curr Top Nutraceut Res. 2008; 6: 1-13.

50. De Gara L, Locato V, Dipierro S, de Pinto MC. Redoxhome-ostasis in plants. The challenge of living with endogenous oxygen production. Respir Physiol Neurobiol. 2010; 173: S13-S19.

51. Bleeg HS, Christensen F. Biosynthesis of ascorbate in yeast. Purification of L-galactono-1,4-lactone oxidase with properties different from mammalian L-gulonolactone oxidase. Eur J Biochem. 1982; 127: 391-396.

52. Banhegyi G, Braun L, Csala M, Puskas F, Mandl J. Ascorbate metabolism and its regulation in animals. Free Radic Biol Med. 1997; 23: 793-803.

53. Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature. 1998; 393: 365-369.

54. Loga FJ, Taylor MC, Wilkinson SR, Kaur H, Kelly JM. The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase. Biochem J. 2007; 407: 419-426.

55. Nishikimi M, Kawai T, Yagi K. Guinea pigs possess a highly mutated gene for L-gulono-gammalactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. J Biol Chem. 1992; 267: 21967-21972.

56. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulonoγ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem. 1994; 269: 13685-13688.

57. Levin M. New concepts in the biology and biochemistry of ascorbic acid. New Engl J Med. 1986; 31: 892-902.

58. Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003; 2: 7.

59. Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis-beta hydroxylation of trimethyllysine by an α-keto glutarate dependent mitochondrial dioxygenase. J Biol Chem. 1978; 253: 1654-1659.

60. Cameron E, Pauling L. Ascorbic acid and the glycosaminoglycans. Oncology. 1973; 27: 181-192.

61. Devaki SJ, Raveendran RL. Vitamin C: sources, functions, sensing and analysis. In: Amal H. Hamza Vitamin C. InTech., 2017.

62. Mirvish SS. Effects of vitamins C and E on N-nitroso compound formation, carcinogenesis, and cancer. Cancer. 1986; 58(8 Suppl): 1842-1850.

63. Delanghe JR, Langlois MR, De Buyzere ML, Na N, Ouyang J, Speeckaert MM, et al. Vitamin C deficiency: more than just a nutritional disorder. Genes Nutr. 2011; 6: 341-346.

64. Yung S, Mayersohn M, Robinson JB. Ascorbic acid elimination in humans after intravenous administration. J Pharm Sci. 1978; 67: 1491-1492.

65. Willet W. Nutritional epidemiology, 2nd edn. Oxford University Press, New York, 1998.

66. Crandon JH, Lund CC, Dill DB. Experimental human scurvy. N Engl J Med. 1940; 223: 353-369.

67. Cahill LE, El-Sohemy A. Haptoglobin genotype modifies the association between dietary vitamin C and serum ascorbic acid deficiency. Am J Clin Nutr. 2010; 92: 1494-1500.

68. Hirschmann JV, Raugi GJ. Adult scurvy. J Am Acad Dermatol. 1999; 41: 895-906.

69. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017; 9: 1211.

70. Kelly F, Dunster C, Mudway I. Air pollution and the elderly: Oxidant/antioxidant issues worth consideration. Eur Respir J. 2003; 21: 70s-75s.

71. Haryanto B, Suksmasari T, Wintergerst E, Maggini S. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam Miner. 2015; 4: 1-15.

72. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992; 11: 172-176.

73. Manning J, Mitchell B, Appadurai DA, Shakya A, Pierce LJ, Wang H, et al. Vitamin C promotes maturation of T-cells. Antioxid Redox Signal. 2013; 19: 2054-2067.

74. Huijskens MJ, Walczak M, Koller N, Briede JJ, Senden-Gijsbers BL, Schnijderberg MC, et al. Technical advance: Ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells. J Leukoc Biol. 2014; 96: 1165-1175.

75. Siegel BV. Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acid. Nature. 1975; 254: 531-532.

76. Dahl H, Degre M. The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathol Microbiol Scand B. 1976; 84b: 280-284.

77. Karpinska T, Kawecki Z, Kandefer-Szerszen M. The influence of ultraviolet irradiation, L-ascorbic acid and calcium chloride on the induction of interferon in human embryo fibroblasts. Arch Immunol Ther Exp. 1982; 30: 33-37.

78. Hemila H. Vitamin C and Infections. Nutrients. 2017; 9: 339.

79. Bharara A, Grossman C, Grinnan D, Syed AA, Fisher BJ, De Wilde C, et al. Intravenous vitamin C administered as adjunctive therapy for recurrent acute respiratory distress syndrome. Case Rep Crit Care. 1016; 2016: 8560871.

80. Fowler AA, Kim C, Lepler L, Malhotra R, Debesa O, Natarajan R, et al. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med. 2017; 6: 85-90.

81. Johnston CS, Barkyoumb GM, Schumacher SS. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: A randomized controlled trial. Nutrients. 2014; 6: 2572-2583.

82. Gorton HC, Jarvis K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Manipulative Physiol Ther. 1999; 22: 530-533.

83. Cai Y, Li Y-F, Tang L-P, Tsoi B, Chen M, Chen H, et al. A new mechanism of vitamin C effects on A/FM/1/47(H1N1) virus-induced pneumonia in restraint-stressed mice. BioMed Res Int. 2015; 2015: 675149.

84. Colunga Biancatelli RM, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther. 2020; 18: 99-101.

85. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004; 80(6 Suppl): 1678S-1688S.

86. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006; 81: 353-373.

87. Calvo MS, Whiting SJ, Barton CN. Vitamin D intake: a global perspective of current status. J Nutr. 2005; 135: 310-316.

88. Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008; 88: 491S-499S.

89. Jäpelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013; 4: 136.

90. Black LJ, Lucas RM, Sherriff JL, Björn LO, Bornman JF. In pursuit of vitamin D in plants. Nutrients. 2017; 9: 136.

91. Silvestro D, Villette C, Delecolle J, Olsen CE, Motawia MS, Geoffroy P, et al. Vitamin D5 in Arabidopsis thaliana. Sci Rep. 2018; 8: 16348.

92. Holick MF. Vitamin D deficiency. N Engl J Med. 2007; 357: 266-281.

93. Kilkkinen A, Knekt P, Aro A, Rissanen H, Marniemi J, Heliovaara M, et al. Vitamin D status and the risk of cardiovascular disease death. Am J Epidemiol. 2009; 170: 1032-1039.

94. Janssens W, Bouillon R, Claes B, Carremans C, Lehouck A, Buysschaert I, et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax. 2010; 65: 215-220.

95. Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart PH. Vitamin D deficiency causes deficits in lung function and alters lung structure. Am J Respir Crit Care Med. 2011; 183: 1336-1343.

96. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry. 2011; 16: 751-762.

97. Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 2015; 460: 53-71.

98. Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F. Vitamin D receptor is necessary for mitochondrial function and cell health. Int J Mol Sci. 2018; 19: 1672.

99. Soe HH, Abas AB, Than NN, Ni H, Singh J, Said AR, et al. Vitamin D supplementation for sickle cell disease. Cochrane Database Syst Rev. 2017; 1: CD010858.

100. Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol. 2020; 199: 105595.

101. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering on a vitamin D-mediated human antimicrobial response. Science. 2006; 311: 1770-1773.

102. Bikle DD. Vitamin D and the immune system: role in protection against bacterial infection. Curr Opin Nephrol Hypertens. 2008; 17: 348-352.

103. Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008; 181: 7090-7099.

104. Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NFkB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol. 2010; 184: 965-974.

105. Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010; 91: 1255-1260.

106. Beard JA, Bearden A, Striker R. Vitamin D and the anti-viral state. J Clin Virol. 2011; 50: 194-200.

107. Belderbos ME, Houben ML, Wilbrink B, Lentjes E, Bloemen EM, Kimpen JL, et al. Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics. 2011; 127: e1513-1520.

108. Chadha MK, Fakih M, Muindi J, Tian L, Mashtare T, Johnson CS, et al. Effect of 25-hydroxyvitamin D status on serological response to influenza vaccine in prostate cancer patients. Prostate. 2011; 71: 368-372.

109. Katz JM, Plowden J, Renshaw-Hoelscher M, Lu X, Tumpey TM, Sambhara S. Immunity to influenza: the challenges of protecting an aging population. Immunol Res. 2004; 29: 113-124.

110. Garry PJ, Hunt WC, Bandrofchak JL, VanderJagt D, Goodwin JS. Vitamin A intake and plasma retinol levels in healthy elderly men and women. Am J Clin Nutr. 1987; 46: 989-994.

111. Comstock GW, Menkes MS, Schober SE, Vuilleumier JP, Helsing KJ. Serum levels of retinol, beta-carotene, and alpha-tocopherol in older adults. Am J Epidemiol. 1988; 127: 114-123.

112. Hollander D, Dadufalza V. Influence of aging on vitamin A transport into the lymphatic circulation. Exp Gerontol. 1990; 25: 61-65.

113. Krasinski SD, Kohn JS, Schaefer EJ, Russell RM. Post prandial plasma retinyl ester response is greater in older subjects compared with younger subjects. J Clin Invest. 1990; 85: 883-892.

114. Mawson AR. Role of fat-soluble vitamins A and A in the pathogenesis of influenza: a new perspective. Int Sch Res Notices. 2013; 2013: 246737.

115. Zhou J, Du J, Huang L, Wang Y, Shi Y, Lin H. Preventive effects of vitamin D on seasonal influenza A in infants: A multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018; 37: 749-754.

116. Gruber-Bzura BM. Vitamin D and influenza-prevention or therapy? Int J Mol Sci. 2018; 19: E2419.

117. Goncalves-Mendes N, Talvas J, Dualé C, Guttmann A, Corbin V, Marceau G, et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial. Front Immunol. 2019; 10: 65.

118. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020; 12: E988.

119. Wu WX, He DR. Low vitamin D levels are associated with the development of deep venous thromboembolic events in patients with ischemic stroke. Clin Appl Thromb Hemost. 2018; 24(9S): 69S-75S.

120. Dehghani K, Nowrouzi A, Pourdavood AH, Rahmanian Z. Effect of vitamin D deficiency in lower extremity and pulmonary venous thromboembolism. Biomed Res Ther. 2019; 6: 3017-3112.

121. Ehsanian R, Timmerman MA, Wright JM, McKenna S, Dirlikov B, Crew J. Venous thromboembolism is associated with lack of vitamin D supplementation in patients with spinal cord injury and low vitamin D levels. PMR. 2019; 11: 125-134.

122. Munné-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci. 2002; 21: 31-57.

123. Mène-Saffrané L. Vitamin E biosynthesis and its regulation in plants. Antioxidants. 2018; 7: 2.

124. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014; 66: 3-12.

125. Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, et al. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med. 2017; 102: 16-36.

126. Chan AC, Chow CK, Chiu D. Interaction of antioxidant and their implication in genetic anemia. Proc Soc Exp Biol Med. 1999; 222: 274-282.

127. Zou T, Liu N, Li SD, Su YC, Man Y, Lu D. Vitamin E inhibits homocysteine-mediated smooth muscle cell proliferation. Nan Fang Yi Ke Da Xue Xue Bao. 2007; 27: 783-786.

128. Huey KA, Fiscus G, Richwine AF, Johnson RW, Meador BM. In vivo vitamin E administration attenuates interleukin-6 and interleukin-1beta responses to an acute inflammatory insult in mouse skeletal and cardiac muscle. Exp Physiol. 2008; 93: 1263-1272.

129. Khor SC, Abdul Karim N, Ngah WZ, Yusof YA, Makpol S. Vitamin E in sarcopenia: current evidences on its role in prevention and treatment. Oxid Med Cell Longev. 2014; 2014: 914853.

130. Saboori S, Koohdani F, Nematipour E, Yousefi Rad E, Saboor-Yaraghi AA, Javanbakht MH, et al. Beneficial effects of omega-3 and vitamin E coadministration on gene expression of SIRT1 and PGC1α and serum antioxidant enzymes in patients with coronary artery disease. Nutr Metab Cardiovasc Dis. 2015; 26: 489-494.

131. Mileva MM, Bakalova RB, Zlateva GA, Galabov AS, Ohba H, Ishikawa M, et al. Еffect of rutin and quercetin and the “oxidative stress” induced by influenza virus infection in mice alveolocytes. In: Izumori K, ed. Proceedings of the 2nd Symposium of the International Society of Rare Sugars. Takamatsu, Japan: Kagawa University Press, 2005: 64-69.

132. Blaner WS. Vitamin E: the enigmatic one. J Lipid Res. 2013; 54: 2293-2294.

133. Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018; 10: 1614.

134. Dworski R, Han W, Blackwell TS, Hoskins A, Freeman ML. Vitamin E prevents NRF2 suppression by allergens in asthmatic alveolar macrophages in vivo. Free Radic Biol Med. 2011; 51: 516-521.

135. Mo H, Yeganehjoo H, Shah A, Mo WK, Soelaiman IN, Shen C-L. Mevalonate-suppressive dietary isoprenoids for bone health. J Nutr Biochem. 2012; 23: 1543-1551.

136. Shen CL, Klein A, Chin KY, Mo H, Tsai P, Yang RS, et al. Tocotrienols for bone health: a translational approach. Ann N Y Acad Sci. 2017; 1401: 150-165.

137. Hasanato RM. Zinc and antioxidant vitamin deficiency in patients with severe sickle cell anemia. Ann Saudi Med. 2006; 26: 17-21.

138. Kaur J, Shalini S, Bansal MP. Influence of vitamin E on alcohol-induced changes in antioxidant defenses in mice liver. Toxicol Mech Methods. 2010; 20: 82-89.

139. Desrumaux CM, Mansuy M, Lemaire S, Przybilski J, Guern NL, Givalois L, et al. Brain vitamin E deficiency during development is associated with increased glutamate levels and anxiety in adult mice. Front Behav Neurosci. 2018; 12: 310.

140. Farrell PM, Bieri JG, Fratantoni JF, Wood RE, di Sant’Agnese PA. The occurrence and effects of human vitamin E deficiency: a study in patients with cystic fibrosis. J Clin Invest. 1977; 60: 233-241.

141. El Euch-Fayache G, Bouhlal Y, Amouri R, Feki M, Hentati F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain. 2014; 137: 402-410.

142. Schmidt EB, Dyerberg J. Omega-3 fatty acids: current status in cardiovascular medicine. Drugs. 1994; 47: 405-424.

143. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011; 58: 2047-2067.

144. Khan WA, Chun-Mei H, Khan N, Iqbal A, Lyu SW, Shah F. Bioengineered plants can be a useful source of omega-3 fatty acids. BioMed Res Int. 2017; 2017: 7348919.

145. Lakra N, Mahmood S, Marwal A, Sudheep NM, Anwar Kh. Bioengineered plants can be an alternative source of omega-3 fatty acids for human health. In: Plant and human health, Vol. 2 Phytochemistry and molecular aspects. Springer, Cham, 2019: 361-382.

146. Guillen MD, Ruiz A, Cabo N, Chirinos R, Pascual G. Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc. 2003; 80: 755-762.

147. Welch AA, Shakya-Shrestha S, Lentjes MA, Wareham NJ, Khaw KT. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of α-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr. 2010; 92: 1040-1051.

148. Oh K, Hu FB, Manson JE. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow up of the nurses’ health study. Am J Epidemiol. 2005; 161: 672-679.

149. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009; 169: 659-669.

150. Birch EE, Garfield S, Castañeda Y, Hughbanks-Wheaton D, Uauy R, Hoffman D. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum Dev. 2007; 83: 279-284.

151. Sakaguchi K, Morita I, Murota S. Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostagl Leukot Essent Fatty Acids 1994; 50: 81-84.

152. Ambrosone CB, Freudenheim JL, Sinha R. Breast cancer risk, meat consumption and N-acetyltransferase (NAT2) genetic polymorphisms. Int J Cancer. 1998; 75: 825-830.

153. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106: 2747-2757.

154. Veierod MB, Laake P, Thelle DS. Dietary fat intake and risk of lung cancer: a prospective study of 51,452 Norwegian men and women. Eur J Cancer Prev. 1997; 6: 540-549.

155. Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006; 67: 1-14.

156. Daak AA, Ghebremeskel K, Mariniello K, Attallah B, Clough P, Elbashir MI. Docosahexaenoic and eicosapentaenoic acid supplementation does not exacerbate oxidative stress or intravascular haemolysis in homozygous sickle cell patients. Prostagl Leukot Essent Fatty Acids. 2013; 89: 305-311.

157. Daak AA, Ghebremeskel K, Hassan Z, Attallah B, Azan HH, Elbashir MI, et al. Effect of omega-3 (n-3) fatty acid supplementation in patients with sickle cell anemia: randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2013; 97: 37-44.

158. Daak AA, Elderdery AY, Elbashir LM, Mariniello K, Mills J, Scarlett G, et al. Omega 3 (n-3) fatty acids down-regulate nuclear factor- kappa B (NF- kB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol Dis. 2015; 55: 48-55.

159. Kalish BT, Matte A, Andolfo I, Iolascon A, Weinberg O, Ghigo A, et al. Dietary ω-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease. Haematologica. 2015; 100: 870-880.

160. Daak A, Rabinowicz A, Ghebremeskel K. Omega-3 fatty acids are a potential therapy for patients with sickle cell disease. Nat Rev Dis Primers. 2018; 4: 15.

161. Ren H, Okpala I, Ghebremeskel K, Ugochukwu CC, Ibegbulam O, Crawford M. Blood mononuclear cells and platelets have abnormal fatty acid composition in homozygous sickle cell disease. Ann Hematol. 2005; 84: 578-583.

162. Kuypers FA. Membrane lipid alterations in hemoglobinopathies. Hematol Am Soc Hematol Educ Program. 2007; 2007: 68-73.

163. Daak AA, Ghebremeskel K, Hassan Z, Attallah B, Azan HH, Elbashir MI, et al. Effect of omega-3 (n-3) fatty acid supplementation in patients with sickle cell anemia: randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2012; 97: 37-44.

164. Sins JWR, Mager DJ, Davis SC, Biemond BJ, Fijnvandraat K. Pharmacotherapeutical strategies in the prevention of acute, vaso-occlusive pain in sickle cell disease: a systematic review. Blood Adv. 2017; 1: 1598-1616.

165. Schwerbrock NMJ, Karlsson EA, Shi Q, Sheridan PA, Beck MA. Fish oil-fed mice have impaired resistance to influenza infection. J Nutr. 2009; 139: 1588-1594.

166. Torrinhas RS, Calder PC, Lemos GO, Waitzberg DL. Parenteral fish oil, an adjuvant pharmacotherapy for COVID-19? Nutrition. 2020; 81: 110900.

167. Fredman G, Serhan CN. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem J. 2011; 437: 185-197.

168. Spite M, Norling L., Summers L, Yang R, Cooper D, Petasis NA, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009; 461: 1287-1291.

169. Hasturk H, Kantarci A, Goguet-Surmenian E, Blackwood A, Andry C, Serhan CN, et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol. 2007; 179: 7021-7029.

170. Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-Like phenotype. J Immunol. 2011; 187: 5408-5418.

171. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, et al. Maresins: novel macrophage mediators with potent anti-inflammatory and proresolving actions. J Exp Med. 2009; 206: 15-23.

172. Dalli J, Zhu M, Vlasenko NA, Deng B, Haeggström JZ, Petasis NA, Serhan CN. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J. 2013; 27: 2573-2583.

173. Souza PR, Marques RM, Gomez EA, Colas RA, Matteis RD, Zak A, et al. Enriched marine oil supplements increase peripheral blood specialized pro-resolving mediators concentrations and reprogram host immune responses: A randomized double-blind placebo-controlled study. Circ Res. 2020; 126: 75-90.

174. Robert KR, Helen EG. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004; 15: 710-716.

175. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015; 95: 1-46.

176. Wang Z, Hassan MU, Nadeem F, Wu L, Zhang F, Li X. Magnesium fertilization improves crop yield in most production systems: a meta-analysis. Front Plant Sci. 2020; 10: 1727.

177. Bertinato J, Xiao CW, Ratnayake WM, Fernandez L, Lavergne C, Wood E, et al. Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food Nutr Res. 2015; 59: 25974.

178. Grober U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients. 2015; 7: 8199-8226.

179. Al Alawi AM, Majoni SW, Falhammar,H. Magnesium and human health: Perspectives and research directions. Int J Endocrinol. 2018; 2018: 9041694.

180. Rubin H. The logic of the membrane, magnesium, mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys. 2007; 458: 16-23.

181. Wolf FI, Trapani V, Cittadini A. Magnesium and the control of cell proliferation: looking for a needle in a haystack. Magnes Res. 2008; 21: 83-91.

182. Wu N, Veillette A. Immunology: magnesium in a signalling role. Nature. 2011; 475: 462-463.

183. Brandao K, Deason-Towne F, Perraud AL, Schmitz C. The role of Mg2+ in immune cells. Immunol Res. 2013; 55: 261-269.

184. Chaigne-Delalande B, Lenardo MJ. Divalent cation signaling in immune cells. Trends Immunol. 2014; 35: 332-344.

185. Yamanaka R, Tabata S, Shindo Y, Hotta K, Suzuki K, Soga T, et al. Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress. Sci Rep. 2016; 6: 30027.

186. Henzel JH, DeWeese MS, Ridenhour G. Significance of magnesium and zinc metabolism in the surgical patient. Arch Surg. 1967; 95: 974-990.

187. Durlach J. Recommended dietary amounts of magnesium: Mg RDA. Magnes Res. 1989; 2: 195-203.

188. Razzaque MS. Magnesium: are we consuming enough? Nutrients. 2018; 10: 1863.

189. Janett S, Camozzi P, Peeters GG, Lava SA, Simonetti GD, Goeggel Simonetti B, et al. Hypomagnesemia induced by long-term treatment with proton-pump inhibitors. Gastroenterol Res Pract. 2015; 2015: 951768.

190. William JH, Danziger J. Magnesium deficiency and proton-pump inhibitor use: a clinical review. J Clin Pharmacol. 2016; 56: 660-668.

191. Reddy P, Edwards LR. Magnesium supplementation in vitamin D deficiency. Am J Ther. 2019; 26: e124-e132.

192. Chernow B. Hypomagnesemia in intensive care correction of units. Chest 1989; 95: 1362.

193. Schimatschek HF, Rempis R. Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnes Res. 2001; 14; 283-290.

194. Cheungpasitporn W, Thongprayoon C, Qian Q. Dysmagnesemia in hospitalized patients: prevalence and prognostic importance. Mayo Clin Proc. 2015; 90: 1001-1010.

195. Emelyanov A, Fedoseev G, Barnes PJ. Reduced intracellular magnesium concentration in asthmatic patients. Eur Respir J. 1999; 13: 38-40.

196. Traviesa DC. Magnesium deficiency: a possible cause of thiamine refractoriness in Wernicke-Korsakoff encephalopathy. J Neurol Neurosurg Psychiatry. 1974; 37: 959-962.

197. Osiezagha K, Ali S, Freeman C, Barker NC, Jabeen S, Maitra S, et al. Thiamine deficiency and delirium. Innov Clin Neurosci. 2013; 10: 26-32.

198. Onozuka M, Nosaka K. Steady-state kinetics and mutational studies of recombinant human thiamin pyrophosphokinase. J Nutr Sci Vitaminol. 2003; 49: 156-162.

199. Sevostyanova IA, Yurshev VA, Solovjeva ON, Zabrodskaya SV, Kochetov GA. Effect of bivalent cations on the interaction of transketolase with its donor substrate. Proteins. 2008; 71: 541-545.

200. Peake RW, Godber IM, Maguire D. The effect of magnesium administration on erythrocyte transketolase activity in alcoholic patients treated with thiamine. Scott Med J. 2013; 58: 139-142.

201. Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc. 2018; 118: 181-189.

202. Durlach J, Bac P, Durlach V, Bara M, Guiet-Bara A. Neurotic, neuromuscular and autonomic nervous form of magnesium imbalance. Magnes Res. 1997; 10: 169-195.

203. Cross SN, Nelson RA, Potter JA, Norwitz ER, Abrahams VM. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner. Am J Reprod Immunol. 2018; 80: e12861.

204. Nolen B, Taylor S, Ghosh G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell. 2004; 15: 661-675.

205. Howe MK, Dowdell K, Roy A, Niemela JE, Wilson W, McElwee JJ, et al. Magnesium restores activity to peripheral blood cells in a patient with functionally impaired Interleukin-2-inducible T cell kinase. Front Immunol. 2019; 10: 2000.

206. Gile J, Ruan G, Abeykoon J, McMahon MM, Witzig T. Magnesium: the overlooked electrolyte in blood cancers? Blood Rev. 2020; 100676.

207. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012; 5: i3-14.

208. Galland L. Magnesium and immune function: an overview. Magnesium. 1988; 7: 290-299.

209. Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. J Exp Bot. 2018; 69: 909-954.

210. Alejandro S, Höller S, Meier B, Peiter E. Manganese in plants: From acquisition to subcellular allocation. Front Plant Sci. 2020; 11: 300.

211. Bowle C, Slooten, L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991; 10: 1723-1732.

212. Allen RD. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 1995; 107: 1049-1054.

213. Lane BG. Oxalate, germins, and higher-plant pathogens. IUBMB Life. 2002; 53: 67-75.

214. Watts DL. Nutrient interrelationships minerals - vitamins - endocrines. J Orthomol Med. 1990; 5: 1990.

215. Deng Q, Liu J, Li Q, Chen K, Liu Z, Shen Y, et al. Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China Environ Health. 2013; 12: 30.

216. Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Aspects Med. 2005; 26: 353-362.

217. Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev. 2018; 2018: 7580707.

218. Baldwin,M, Mergler D, Larribe F, Belanger S, Tardif R, Bilodeau L, et al. Bioindicator and exposure data for a population based study of manganese. Neurotoxicology. 1999; 20: 343-353.

219. Zota AR, Ettinger AS, Bouchard M, Amarasiriwardena CJ, Schwartz J, Hu H, et al. Maternal blood manganese levels and infant birth weight. Epidemiology. 2009; 20: 367-373.

220. Mena K, Horiuchi K, Burke K, Cotzias GC. Chronic manganese poisoning: individual susceptibility and absorption of iron. Neurology. 1969; 19: 1000-1006.

221. Meltzer HM, Brantsaeter AL, Borch-Iohnsen B, Ellingsen DG, Alexander J, Thomassen Y, et al. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study. Environ Res. 2010; 110: 497-504.

222. Lee BK, Kim Y. Effects of menopause on blood manganese levels in women: analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data. Neurotoxicology. 2012; 33: 401-405.

223. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med. 2013; 62: 65-75.

224. Haase H. Innate immune cells speak manganese. Immunity 2018; 48: 616-618.

225. Claus Henn B, Kim J, Wessling-Resnick M, Téllez-Rojo MM, Jayawardene I, Ettinger AS, et al. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models. Environ Health. 2011; 10: 97.

226. Grochowski C, Blicharska E, Baj J, Mierzwińska A, Brzozowska K, Forma A, et al. Serum iron, magnesium, copper, and manganese levels in alcoholism: a systematic review. Molecules. 2019; 24: E1361.

227. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002; 51: 2348-2354.

228. Fleming DJ, Jacques PF, Tucker KL, Massaro JM, D’Agostino RB, Wilson PW, et al. Iron status of the free-living, elderly Framingham Heart Study cohort: an iron-replete population with a high prevalence of elevated iron stores. Am J Clin Nutr. 2001; 73: 638-646.

229. Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PW, Wood RJ. Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am J Clin Nutr. 2002; 76: 1375-1384.

230. Bowers K, Yeung E, Williams MA, Qi L, Tobias DK, Hu FB, et al. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care. 2011; 34: 1557-1563.

231. Qiu C, Zhang C, Gelaye B, Enquobahrie DA, Frederick IO, Williams MA. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care. 2011; 34: 1564-1569.

232. Cunningham J, Leffell M, Mearkle P, Harmatz P. Elevated plasma ceruloplasmin in insulin-dependent diabetes mellitus: evidence for increased oxidative stress as a variable complication. Metabolism. 1995; 44: 996-999.

233. Memişoğullari R, Bakan E. Levels of ceruloplasmin, transferrin, and lipid peroxidation in the serum of patients with Type 2 diabetes mellitus. J Diabetes Complic. 2004; 18: 193-197.

234. Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, et al. Manganese increases the sensitivity of the cGAS-STING pathway for Double-Stranded DNA and is required for the host defense against DNA viruses. Immunity 2018; 48: 675-687.

235. Zhang R, Wang C, Guan Y, Wei X, Sha M, Jing M, et al. The Manganese salt (MnJ) functions as a potent universal adjuvant. bioRxiv. 2019; doi: 10.1101/783910.

236. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016; 17: 1142-1149.

237. Pirbalouti AG, Bistghani EZ, Malekpoor F. An overview on genus Thymus. J Herb Drugs. 2015; 6: 93-100.

238. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999; 12: 564-582.

239. Zuzarte M, Gonçalves MJ, Cavaleiro C, Cruz MT, Benzarti A, Marongiu B, et al. Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind Crops Prod. 2013; 44: 97-103.

240. Alves-Silva JM, Zuzarte M, Gonçalves J, Cavaleiro C, Cruz MT, Cardoso SM, et al. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid Based Complem Altern Med. 2016; 2016: 1-10.

241. Aksel B. Bioactive compounds in plants-benefits and risks for man and animals. The Norwegian Academy of Science and Letters, Oslo 2008: 13-14.

242. Sharangi AB, Guha S. Wonders of leafy spices: Medicinal properties ensuring human health. Sci Int. 2013; 2013: 312-317.

243. Komaki A, Hoseini F, Shahidi S, Baharlouei N. Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J Tradit Complem Med. 2016; 6: 257-261.

244. Ekoh S, Akubugwo E, Chibueze Ude V, Edwin N. Anti-hyperglycemic and anti-hyperlipidemic effect of spices (Thymus vulgaris, Murraya koenigii, Ocimum gratissimum and Piper guineense) in alloxan-induced diabetic rats. Int J Biosci. 2014; 4: 179-187.

245. Reddy P, Kandisa R, Varsha P, Satyam S. Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plants. 2014; 3: 164.

246. Stahl-Biskup E, Venskutonis R. 27 - Thyme. In: Peter KV, ed. Handbook of herbs and spices. 2nd edn. Woodhead Publishing, Abington, Cambridge, UK, 2012: 499-525.

247. Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants-rich sources for a new group of multi-potent plant extracts. Molecules. 2009; 14: 2016-2031.

248. Proestos C, Chorianopoulos N, Nychas GJ, Komaitis M. RP-HPLC analysis of the phenolic compounds of plant extracts. investigation of their antioxidant capacity and antimicrobial activity. J Agric Food Chem. 2005; 53: 1190-1195.

249. Kivilompolo M, Hyotylainen T. Comprehensive two-dimensional liquid chromatography in analysis of Lamiaceae herbs: characterisation and quantification of antioxidant phenolic acids. J Chromatogr A. 2007; 1145: 155-164.

250. Wang M, Li J, Ho G, Peng X, Ho C. Isolation and identification of antioxidative flavonoid glycosides from thyme (Thymus vulgaris L.). J Food Lipids. 1998; 5: 313-321.

251. Vila R. Flavonoids and further polyphenols in the genus Thymus. In: Stahl-Biskup E, Saez F, eds. Thyme - The Genus Thymus. Taylor & Francis, London, 2002: 144-176.

252. Miladi H, Slama R, Mili D, Zouari S, Bakhrouf A, Ammar E. Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Nat Sci. 2013; 5: 729-739.

253. Rabiei Z, Mokhtari S, Asgharzade S, Gholami M, Rahnama S, Rafieian-kopaei M. Inhibitory effect of Thymus vulgaris extract on memory impairment induced by scopolamine in rat. Asian Pac J Trop Biomed. 2015; 5: 845-851.

254. Zhou E, Fu Y, Wei Z, Yu Y, Zhang X, Yang Z. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia. 2014; 96: 131-137.

255. Ocaña A, Reglero G. Effects of thyme extract oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on cytokine production and gene expression of oxLDL-stimulated THP-1-macrophages. J Obes. 2012; 2012: 104706.

256. Vigo E, Cepeda A, Gualillo O, Perez-Fernandez R. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. J Pharm Pharmacol. 2004; 56: 257-263.

257. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001; 91: 453-462.

258. Pina-Vaz C, Goncalves-Rodrigues A, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro L, et al. Antifungal activity of thymus oils and their major components. J Eur Acad Dermatol Venereol. 2004; 18: 73-78.

259. Soliman KM, Badeaa RI. Effect of oil extracted from some medicinal plants of different mycotoxigenic fungi. Food Chem Toxicol. 2002; 40: 1669-1675.

260. El-Nekeety AA, Mohamed SR, Hathout AS, Hassan NS, Aly SE, Abdel-Wahhab MA. Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon. 2011; 57: 984-991.

261. ESCOP. Thymi Herba/Thyme. ESCOP monographs. Georg Thieme Verlag, 2003.

262. Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Schulz V, eds. Hagers Enzyklopädie der Arzneistoffe und Drogen, 14, Rut-Suf, 6. Auflage, Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 2007.

263. Peltola V, Waris M, Osterback R, Susi T, Hyypia T, Ruuskanen O. Clinical effects of rhinovirus infections. J Clin Virol. 2008; 43: 411-414.

264. Winther B. Rhinovirus infections in the upper airway. Proc Am Thorac Soc. 2011; 8: 79-89.

265. Rezatofighi SE, Seydabadi A, Seyyed Nejad SM. Evaluating the efficacy of Achillea millefolium and Thymus vulgaris extracts against Newcastle Disease Virus in ovo. Jundishapur J Microbiol. 2014; 7: e9016.

266. Nolkemper S, Reichling J, Stintzing FC, Carle R, Schnitzler P. Antiviral effect of aqueous extracts from species of the Lamiaceae family against herpes simplex virus type 1 and type 2 in vitro. Planta Med. 2006; 72: 1378-1382.

267. Lenz E, Müller C, Mostafa A, Dzieciolowski J, Kanrai P, Dam S, et al. Authorised medicinal product Aspecton ® Oral Drops containing thyme extract KMTv24497 shows antiviral activity against viruses which cause respiratory infections. J Herb Med. 2018; 13: 26-33.

268. Aktories K, Förstermann U, Hofmann FB, Starke K. Allgemeine und Spezielle Pharmakologie und Toxikologie: Urban & Fischer in Elsevier, 2005.
Published
2020-08-19
How to Cite
(1)
Hamada, A. Vitamins, Omega-3, Magnesium, Manganese, and Thyme Can Boost Our Immunity and Protect Against COVID-19. European Journal of Biological Research 2020, 10, 271-295.
Section
Review Articles

Most read articles by the same author(s)