Pectin coating of titanium and polystyrene surfaces modulates the macrophage inflammatory response

  • Anna Mieszkowska Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
  • Justyna Folkert Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
  • Bernard Burke Faculty of Health and Life Sciences, University of Coventry, CV1 2DS Coventry, UK
  • Owen Addison Institute of Clinical Sciences, School of Dentistry, University of Birmingham, Birmingham, B5 7EG, UK; Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, T6G 1C9, AB, Canada
  • Katarzyna Gurzawska Institute of Clinical Sciences, School of Dentistry, University of Birmingham, Birmingham, B5 7EG, UK
Keywords: Rhamnogalacturonan-I, Titanium, Nanocoating, Porphyromonas gingivalis, LPS, Macrophage, Inflammation


Titanium has been used with success for bone anchoring of dental implants. However, when implant surfaces are exposed to the oral environment, the progression of peri-implantitis triggered by specific oral bacteria has been reported. Bacterial colonization of implants leads to prolonged immune cell activation and bone resorption. A new strategy to improve implant biocompatibility and prevent peri-implantitis is to develop pectin surface nanocoatings. These plant-derived polysaccharides are promising candidates for surface nanocoatings of titanium implants due to their osteogenic and anti-inflammatory properties. Therefore, the aim of the study was to evaluate the in vitro effect of nanocoating with plant-derived rhamnogalacturonan-I (RG-I) on pro- and anti-inflammatory responses of primary human monocyte-derived macrophages (HMDMs) induced by Escherichia coli LPS and Porphyromonas gingivalis bacteria. In the present study, two different types of surface materials, tissue culture polystyrene (TCPS) plates and titanium (Ti) discs, coated with pectic polysaccharides, potato unmodified RG-I (PU) and potato dearabinanated RG-I (PA), have been examined. The inflammatory responses of HMDMs after E. coli LPS/P. gingivalis stimulation were investigated through gene expression measurements of pro- and anti-inflammatory cytokines. The results showed that PU and PA decreased expression of the proinflammatory genes tumour necrosis factor-alpha (TNFA), interleukin-1 beta (IL1B) and interleukin-8 (IL8) in activated HMDMs cultured on TCPS/Ti surfaces. In contrast, the effects on anti-inflammatory interleukin-10 (IL10) gene expression were not significant. The results indicate that RG-Is should be considered as a candidate for organic nanocoatings of titanium implant surfaces in order to limit host proinflammatory responses and improve bone healing.



1. Danza M, Zollino I, Candotto V, Cura F, Carinci F. Titanium alloys (AoN) and their involvement in osseointegration. Dent Res J. 2012; 9(Suppl 2): S207.

2. Gaviria L, Salcido JP, Guda T, Ong JL. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg. 2014; 40(2): 50-60.

3. Oshida Y, Tuna EB, Aktören O, Gençay K. Dental implant systems. Int J Mol Sci. 2010; 11(4): 1580-1678.

4. Albouy JP, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2012; 39(2): 182-187.

5. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1 - review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthod. 2004; 17(5): 536-543.

6. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2 - review focusing on clinical knowledge of different surfaces. Int J Prosthod. 2004; 17(5): 544-564.

7. Gurzawska K, Svava R, Yihua Y, Haugshøj KB, Dirscherl K, Levery SB, et al. Osteoblastic response to pectin nanocoating on titanium surfaces. Mater Sci Eng C. 2014; 43: 117-125.

8. Bussy C, Verhoef R, Haeger A, Morra M, Duval JL, Vigneron P, et al. Modulating in vitro bone cell and macrophage behavior by immobilized enzymatically tailored pectins. J Biomed Mater Res A. 2008; 86(3): 597-606.

9. Gurzawska K, Svava R, Jørgensen NR, Gotfredsen K. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans. J Biomed Nanotechnol. 2012; 8(6): 1012-1024.

10. Gurzawska K, Svava R, Syberg S, Yihua Y, Haugshøj KB, Damager I, et al. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response. J Biomed Mater Res A. 2012; 100(3): 654-664.

11. Kokkonen H, Cassinelli C, Verhoef R, Morra M, Schols H, Tuukkanen J. Differentiation of osteoblasts on pectin-coated titanium. Biomacromolecules. 2008; 9(9): 2369-2376.

12. Kokkonen HE, Ilvesaro JM, Morra M, Schols HA, Tuukkanen J. Effect of modified pectin molecules on the growth of bone cells. Biomacromolecules. 2007; 8(2): 509-515.

13. Folkert J, Meresta A, Gaber T, Miksch K, Buttgereit F, Detert J, et al. Nanocoating with plant-derived pectins activates osteoblast response in vitro. Int J Nanomed. 2017; 12: 239.

14. Meresta A, Folkert J, Gaber T, Miksch K, Buttgereit F, Detert J, et al. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection. Int J Nanomed. 2017; 12: 433.

15. Nagel M-D, Verhoef R, Schols H, Morra M, Knox JP, Ceccone G, et al. Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts. Biochim Biophys Acta (BBA) General Subjects. 2008; 1780(7-8): 995-1003.

16. Boonsiriseth K, Suriyan N, Min K, Wongsirichat N. Bone and soft tissue healing in dental implantology. J Med Med Sci. 2014; 5(5): 121-126.

17. Pivodova V, Frankova J, Ulrichova J. Osteoblast and gingival fibroblast markers in dental implant studies. Biomed Pap. 2011; 155(2): 109-116.

18. Sotoodehnejadnematalahi F, Staples KJ, Chrysanthou E, Pearson H, Ziegler-Heitbrock L, Burke B. Mechanisms of hypoxic up-regulation of versican gene expression in macrophages. PLoS One. 2015; 10(6): e0125799.

19. Stanford CM. Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation. Int J Mol Sci. 2010; 11(1): 354-69.

20. Vadiveloo P, Keramidaris E, Morrison W, Stewart A. Lipopolysaccharide-induced cell cycle arrest in macrophages occurs independently of nitric oxide synthase II induction. Biochim Biophys Acta (BBA) Mol Cell Res. 2001; 1539(1-2): 140-146.

21. Tesmer M, Wallet S, Koutouzis T, Lundgren T. Bacterial colonization of the dental implant fixture-abutment interface: an in vitro study. J Periodontol. 2009; 80(12): 1991-1997.

22. Holt SC, Kesavalu L, Walker S, Genco CA. Virulece factors of Porphyromonas gingivalis. Periodontol 2000. 1999; 20(1): 168-238.

23. Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012; 333(1): 1-9.

24. Leonhardt Å, Renvert S, Dahlén G. Microbial findings at failing implants. Clin Oral Implants Res. 1999; 10(5): 339-345.

25. Moriaty TF, Zaat SA, Busscher HJ, eds. Biomaterials associated infection: immunological aspects and antimicrobial strategies. New York, Springer Science & Business Media, 2012.

26. Ardila MCM, Villa-Correa YA. Gram-negative enteric rods associated to early implant failure and peri-implantitis: case report and systematic literature review. Int J Odontostomat. 2015; 9(2): 329-336.

27. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003; 5(5): 449-456.

28. Shen WC, Wang X, Qin WT, Qiu XF, Sun BW. Exogenous carbon monoxide suppresses Escherichia coli vitality and improves survival in an Escherichia coli-induced murine sepsis model. Acta Pharmacol Sin. 2014; 35(12): 1566-1576.

29. Gallet M, Vayssade M, Morra M, Verhoef R, Perrone S, Cascardo G, et al. Inhibition of LPS-induced proinflammatory responses of J774. 2 macrophages by immobilized enzymatically tailored pectins. Acta biomater. 2009;5(7):2618-22.

30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001; 25(4): 402-408.

31. Gamal-Eldeen AM, Amer H, Helmy WA. Cancer chemopreventive and anti-inflammatory activities of chemically modified guar gum. Chem Biol Interact. 2006; 161(3): 229-240.

32. Razali FN, Ismail A, Abidin NZ, Shuib AS. Stimulatory effects of polysaccharide fraction from Solanum nigrum on RAW 264.7 murine macrophage cells. PLoS One. 2014; 9(10): e108988.

33. Boersema GS, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM. The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. Biores Open Access. 2016; 5(1): 6-14.

34. Martin M, Katz J, Vogel SN, Michalek SM. Differential induction of endotoxin tolerance by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli. J Immunol. 2001; 167(9): 5278-5285.

35. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014; 5: 491.

36. Dursun E, Tözüm TF. Peri-implant crevicular fluid analysis, enzymes and biomarkers: a systemetic review. J Oral Maxillofac Surg. 2016; 7(3): e9.

37. Noh MK, Jung M, Kim SH, Lee SR, Park KH, Kim DH, et al. Assessment of IL-6, IL-8 and TNF-α levels in the gingival tissue of patients with periodontitis. Exp Ther Med. 2013; 6(3): 847-851.

38. Gunning AP, Bongaerts RJ, Morris VJ. Recognition of galactan components of pectin by galectin-3. FASEB J. 2009; 23(2): 415-424.

39. Hsu DK, Yang R-Y, Pan Z, Yu L, Salomon DR, Fung-Leung W-P, et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol. 2000; 156(3): 1073-1083.
How to Cite
Mieszkowska, A., Folkert, J., Burke, B., Addison, O., & Gurzawska, K. (2018). Pectin coating of titanium and polystyrene surfaces modulates the macrophage inflammatory response. European Journal of Biological Research, 8(2), 84-95. Retrieved from
Research Articles