Efficacy of octenidine against Pseudomonas aeruginosa strains

  • Tomasz M. Karpiński Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland https://orcid.org/0000-0001-6599-9204
Keywords: Pseudomonas aeruginosa, Octenidine dihydrochloride, Octenisept, Antibacterial activity, TTC, MTT

Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium causing skin and soft tissue infections, complicated urinary tract infections, blood infections, and nosocomial (hospital-acquired) infections. One of the most often used antiseptics in the skin and soft tissue infections is octenidine dihydrochloride. The aim of this study was an evaluation of octenidine activity against strains of P. aeruginosa. Additionally, were compared two staining methods (TTC and MTT) for confirmation of bacterial growth. The study involved eight strains of P. aeruginosa. In order to determine the minimum inhibitory concentration (MIC) of octenidine, the microdilution method was used. For bacterial growth detection was used staining method with 2,3,5-triphenyl-tetrazolium chloride (TTC) and with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT). In the study has been demonstrated the excellent activity of octenidine against all strains of Pseudomonas aeruginosa. For all tested strains, MICs of octenidine were 0.00039% or 0.00078%, what is equivalent to 3.9 µg/ml and 7.8 µg/ml, respectively. In the study, test with MTT for three strains was more sensitive than a test with TTC. Concluding, octenidine is an antiseptic with high efficacy against Pseudomonas aeruginosa strains. Simultaneously, it was stated that a test with MTT is more sensitive than study with TTC.

DOI: http://dx.doi.org/10.5281/zenodo.3339499

References

1. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019; 37(1): 177-192.

2. Wolska K, Kot B, Piechota M, Frankowska A. Oporność Pseudomonas aeruginosa na antybiotyki. Resistance of Pseudomonas aeruginosa to antibiotics. Postepy Hig Med Dosw. 2013; 67: 1300-1311.

3. Hauser AR, Sriram P. Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad. Med. 2005; 117: 41-48.

4. Rice L. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197: 1079-1081.

5. Livermoore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002; 34: 634-640.

6. Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000; 3: 247-255.

7. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomen of bacterial resistance. J Med Microbiol. 2009; 58: 1133-1148.

8. Barbier F, Andremont A, Wolff M, Bouadma L. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opin Pulm Med. 2013; 19: 216-228.

9. Urbanowicz P. Skomplikowany Pseudomonas aeruginosa - portret niezwykle groźnej bakterii. Aktualności Narodowego Programu Ochrony Antybiotyków. 2016; 2. http://antybiotyki.edu.pl/wp-content/uploads/Biuletyn/biuletyn-npoa-2016_2.pdf

10. European Centre for Disease Prevention and Control. Surveillance Report: Antimicrobial resistance surveillance in Europe 2015. https://ecdc.europa.eu/sites/portal/files/media/en/publications/ Publications/antimicrobial-resistance-europe-2015.pdf

11. Tacconelli E, Magrini N, Carmeli Y, Harbarth S, Kahlmeter G, Kluytmans J, et al. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. 2017: 1-7. http://www.who.int/medicines/publications/WHO-PPL-Short_ Summary_25Feb-ET_NM_WHO.pdf

12. Octenidine. ChemSpider. http://www.chemspider.com/Chemical-Structure.46371.html?rid=098ccf26-f875-4238-a05c-962934a9857a

13. Sedlock DM, Bailey DM. Microbicidal activity of octenidine hydrochloride, a new alkanediylbis[pyridine] germicidal agent. Antimicrob Agents Chemother. 1985; 28: 786-790.

14. Tirali RE, Bodur H, Sipahi B, Sungurtekin E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro. Aust Endod J. 2013; 39: 15-18.

15. Hubner NO, Siebert J, Kramer A. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol. 2010; 23(5): 244-258.

16. Bartoszewicz M, Junka A, Smutnicka D, Secewicz A, Mączyńska B, Szymczyk P, et al. Porównanie skuteczności przeciwdrobnoustrojowej antyseptyków zawierających oktenidynę i etakrydynę względem biofilmu tworzonego przez szczepy S. aureus i P. aeruginosa izolowane z zakażeń ran przewlekłych. Comparison of antimicrobial efficacy of antiseptics based on octenidine and ethacridine against biofilm forms of S. aureus and P. aeruginosa isolated from chronic wound infections. Lecz Ran. 2012; 9(4): 147-152.

17. Bartoszewicz M, Junka AF, Dalkowski P, Słojewska-Poznańska E, Szymczyk P, Zuchowski A. Wrażliwość na wybrane antyseptyki klinicznych szczepów Pseudomonas aeruginosa w formie biofilmowej i planktonicznej. Evaluation of efficacy of antiseptics against biofilmic and planktonic forms of clinical forms of Pseudomonas aeruginosa. Chir Plast Oparz. 2016; 4(4): 131-138.

18. Dalkowski P, Bartoszewicz M, Junka A, Sopata M. Wrażliwość klinicznych szczepów Klebsiella pneumoniae wywołujących zakażenia miejscowe w formie biofilmowej i planktonicznej na antyseptyki. Evaluation of efficacy of antiseptics against biofilmic and planktonic forms of Klebsiella pneumoniae causing local infections. Forum Zak. 2017; 8(4): 239-244.

19. Bartoszewicz M, Junka A, Dalkowski P, Sopata M. Wrażliwość klinicznych szczepów Enterococcus faecalis wywołujących zakażenia miejscowe w formie biofilmowej i planktonicznej na antyseptyki. Evaluation of efficacy of antiseptics against biofilmic and planktonic forms of Enterococcus faecalis causing local infections. Forum Zak. 2017; 8(5): 337-343.

20. Slee AM, O'Connor JR. In vitro antiplaque activity of octenidine dihydrochloride (WIN 41464-2) against preformed plaques of selected oral plaque-forming microorganisms. Antimicrob Agents Chemother. 1983; 23: 379-384.

21. Eisenbeiss W, Siemers F, Amtsberg G i wsp. Prospective, double-blinded, randomised controlled trial assessing the effect of an Octenidine-based hydrogel on bacterial colonisation and epithelialization of skin graft wounds in burn patients. Int J Burns Trauma. 2012; 2(2): 71-79.

22. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria - a review. Acta Histochem. 2018; 120(4): 303-311.

23. Przybyłek I, Karpiński TM. Antibacterial properties of propolis. Molecules 2019; 24 (11): 2047.

24. Koburger T, Hübner NO, Braun M, Siebert J, Kramer A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother. 2010; 65(8): 1712-1719.

25. Uzer Celik E, Tunac AT, Ates M, Sen BH. Antimicrobial activity of different disinfectants against cariogenic microorganisms. Braz Oral Res. 2016; 30(1): e125.

26. Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ, Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect. 2018; 100(3): e23-e29.

27. Kampf G. Acquired resistance to chlorhexidine - is it time to establish an 'antiseptic stewardship' initiative? J Hosp Infect. 2016; 94(3): 213-227.

28. Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother. 2016; 61(1): e01162-16.

29. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria - is there cause for concern? Front Microbiol. 2019; 10: 587.
Published
2019-06-18
How to Cite
Karpiński, T. (2019). Efficacy of octenidine against Pseudomonas aeruginosa strains. European Journal of Biological Research, 9(3), 135-140. Retrieved from http://journals.tmkarpinski.com/index.php/ejbr/article/view/207
Section
Research Articles