Production and purification of extreme xylanase from Aspergillus flavus AUMC 10331 in sub-merged fermentation

  • AH Moubasher Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71511, Egypt; Assiut University Mycological Centre (AUMC), Assiut University, Assiut 71511, Egypt
  • Mady Ismail Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71511, Egypt; Assiut University Mycological Centre (AUMC), Assiut University, Assiut 71511, Egypt
  • Ramadan Mohamed Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71511, Egypt
  • Osama Al-Bedak Assiut University Mycological Centre (AUMC), Assiut University, Assiut 71511, Egypt
Keywords: Xylanase, Aspergillus flavus, Fermentation


Xylan, extracted from oat spelts in a previous work, was assayed by HPLC and used as carbon source for the production of xylanase from Aspergillus flavus AUMC 10331. The produced xylanase was purified using ion exchange resin (IR-120 EP) and gel filtration column of Sephadex G-75 and Sephadex G-100. The purified xylanase showed total activity of 5.5 IU/ml and specific activity of 687.5 IU/mg, and the enzyme purified 156.75 fold with 4.43 % yield. The highest activity at pH 7.0 and 10.5 indicating two xylanases with the most interesting one with a maximum activity at pH 10.5 and 65 °C. The enzyme activity was greatly stimulated by 5 mM of FeSO4 and CuSO4, while slightly inhibited by other metal ions. Km and Vmax were determined as 8.36 mg/ml and 172.4 IU/min respectively.



Download data is not yet available.


1. Dhiman SS, Sharma J, Battan B. Industrial applications and future prospects of microbial xylanases: a review. BioRes. 2008; 3(4): 1377-1402.

2. Singh S, Madlala AM, Prior BA. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev. 2003; 27(1): 3-16.

3. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 2005; 29(1): 3-23.

4. Biely P. Microbial xylanolytic systems. Trends Biotechnol. 1985; 3(11): 286-290.

5. Polizeli M, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 2005; 67(5): 577-591.

6. Saha BC. Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem. 2002; 37(11): 1279-1284.

7. Kim JD. Production of xylanolytic enzyme complex from Aspergillus flavus using agricultural wastes. Mycobiology. 2005; 33(2): 84-89.

8. Chidi SB, Godana B, Ncube I, Van Rensburg EJ, Cronshaw A, Abotsi EK. Production, purification and characterization of celullase-free xylanase from Aspergillus terreus UL 4209. Afr J Biotechnol. 2008; 7(21): 3939-3948.

9. Fengxia L, Mei L, Zhaoxin L, Xiaomei B, Haizhen Z, Yi W. Purification and characterization of xylanase from Aspergillus ficuum AF-98. Biores Technol. 2008; 99(13): 5938-5941.

10. Betini JHA, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli MLTM. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosystems Engin. 2009; 32(6): 819-824.

11. Bajaj BK, Abbass M. Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28. 3 Biotech. 2011; 1(3): 161-171.

12. de Guimaraes NCA, Sorgatto M, Peixoto-Nogueira SC, Betini JHA, Zanoelo FF, Marques MR, et al. Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus. 2013; 2(1): 380.

13. Moubasher AH, Ismail MA, Mohamed RA, Al-Bedak OA. Xylanase and cellulase production under extreme conditions in submerged fermentation by some fungi isolated from hypersaline, alkaline lakes of Wadi-El-Natrun, Egypt. J Basic Appl Mycol. 2016; 7: 19-32.

14. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S. Production of fungal xylanases. Biores Technol. 1996; 58(2): 137-161.

15. Abdel-Sater M, El-Said A. Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes. Int Biodeterior Biodegrad. 2001; 47(1): 15-21.

16. Ismail M, Moubasher AH, Mohamed RA, Al-Bedak OA. Extremophilic fungi and chemical analysis of hypersaline, alkaline lakes of Wadi-El-Natrun, Egypt. Int J Techn Res Sci. 2017; 1(10): 345-363.

17. Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992; 23(3): 257-270.

18. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31(3): 426-428.

19. Ghose T, Bisaria VS. Measurement of hemicellulase activities: Part I Xylanases. Pure Appl Chem. 1987; 59(12): 1739-1751.

20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2): 248-254.

21. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934; 56(3): 658-666.

22. Ho HL, Iylia Z. Optimised production of xylanase by Aspergillus brasiliensis under submerged fermentation (SmF) and its purification using a two-step column chromatography. J Adv Biol Biotechnol. 2015; 4(3): 1-22.

23. Kango N, Agrawal S, Jain P. Production of xylanase by Emericella nidulans NK-62 on low-value lignocellulosic substrates. World J Microbiol Biotechnol. 2003; 19(7): 691-694.

24. Liu W, Lu Y, Ma G. Induction and glucose repression of endo-β-xylanase in the yeast Trichosporon cutaneum SL409. Process Biochem. 1999; 34(1): 67-72.

25. Damaso MC, Andrade CM, Pereira N. Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Springer, 2000.

26. Purkarthofer H, Steiner W. Induction of endo-β-xylanase in the fungus Thermomyces lanuginosus. Enzyme Microbial Technol. 1995; 17(2): 114-118.

27. Porath J, Flodin P. Gel filtration: a method for desalting and group separation. Nature. 1959; 183(4676): 1657-1659.

28. Coral G, Arikan B, Ünaldi MN, Güvenmez HK. Some properties of thermostable xylanase from an Aspergillus niger strain. Annals Microbiol. 2002; 52(3): 299-306.

29. Zheng J, Guo N, Wu L, Tian J, Zhou H. Characterization and constitutive expression of a novel endo-1, 4-β-d-xylanohydrolase from Aspergillus niger in Pichia pastoris. Biotechnol Lett. 2013; 35(9): 1433-1440.

30. Li XR, Xu H, Xie J, Yi QF, Li W, Qiao DR, et al. Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264. J Microbiol Biotechnol. 2011; 24(4): 483-488.

31. Umsza-Guez MA, Díaz AB, Ory I, Blandino A, Gomes E, Caro I. Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace. Braz J Microbiol. 2011; 42(4): 1585-1597.

32. Beg QK. Microbialxylanases andtheirindustrialapplications: areview. Appl Microbiol Biotechnol. 2001; 56: 326-338.

33. Shah AR, Madamwar D. Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World J Microbiol Biotechnol. 2005; 21(3): 233-243.

34. Franco PF, Ferreira HM, Ferreira Filho EX. Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4. Biotechnol Appl Biochem. 2004; 40(3): 255-259.

35. Ahmed S, Riaz S, Jamil A. Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol. 2009; 84(1): 19-35.

36. Teplitsky A, Shulami S, Moryles S, Shohamb Y, Shoham G. Crystallization and preliminary X‐ray analysis of an intracellular xylanase from Bacillus stearothermophilus T‐6. Acta Crystallogr Section D. 2000; 56(2): 181-184.
How to Cite
Moubasher, A.; Ismail, M.; Mohamed, R.; Al-Bedak, O. Production and Purification of Extreme Xylanase from Aspergillus Flavus AUMC 10331 in Sub-Merged Fermentation. European Journal of Biological Research 2019, 9, 20-28.
Research Articles