Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis

Farag A. Shaieb, Ahmed Abdel-Salam Issa, Ahmad Meragaa

Abstract


Cyanobacteria inhabit a range of diverse and extreme habitats and have potential to produce an elaborate array of secondary metabolites with unusual structures and potent bioactivity. Libya is well known as an area of high biological diversity. In our study, fifteen cyanobacteria from the natural area were isolated and screened for their antimicrobial activities. Cyanobacteria were extracted in water and ethanol, and tested for antimicrobial activity against seven bacteria (Serratia, Escherichia, Bacillus, Micrococcus, Staphylococcus, Klebsiella and Pseudomonas) and Aspergillus flavus for antifungal activity. Aqueous and ethanol extracts of the blue green alga Anabaena circinalis exhibited antibacterial activity against Serratia marcescens and Escherichia coli, however it has activity against Klebsiella pneumoniae and the fungus Aspergillus flavus using only ethanol extracts. Also, the Nostoc commune exhibited significant activity against E. coli, S. marcescens and Bacillus cereus in addition to K. pneumoniae and Micrococcus luteus. The other blue green alga Nostoc muscorum has wide range activity on bacteria Gram-positive bacteria (Staphylococcus aureus, M. luteus and B. cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, K. pneumoniae and S. marcescens) in addition to the fungus A. flavus. As regards the dominant species of cyanobacteria Spirulina platensis under investigation, the aqueous extract of Spirulina platensis has antibacterial activity against all species tested except B. cereus and P. aeruginosa. They exhibited significant activity against S. aureus, E. coli, S. marcescens, B. cereus, K. pneumoniae and M. luteus, in addition to the fungus A. flavus. Therefore, two cyanobacteria may be useful in various applications and used as basic knowledge for further investigations.


Keywords


Cyanobacteria; Bacteria; Fungi; Antibacterial activity

Full Text:

PDF

References


Issa AA, Adam MS, Fawzy MA. Alterations in some metabolic activities of Scenedesmus quadricauda and Merismopedia glauca in response to glyphosate herbicide. J Biol Earth Sci. 2013; 3(1): B17-B28.

Rao R. Antimicrobial activity of cyanobacteria. Indian J Mar Sci. 1994; 23: 55-56.

Issa AA. Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environ Toxicol Pharmacol. 1999; 8: 33-37. http://dx.doi.org/10.1016/S1382-6689(99)00027-7

Pushparaj B, Pelosi E, Juttner F. Toxicological analysis of the marine cyanobacterium Nodularia harveyana. J Appl Phycol. 1999; 10: 527-530. http://dx.doi.org/10.1023/A:1008080615337

Schaeffer DJ, Krylov VS. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf. 2000; 45: 208-227. http://dx.doi.org/10.1006/eesa.1999.1862

Patterson GML, Baker KK, Baldwin CL, Bolis CM, Caplan FR, Larsen LK, et al. Antiviral activity of cultured blue-green algae (Cyanophyta). J Phycol. 1993; 29: 125-130. http://dx.doi.org/ 10.1111/j.1529-8817.1993.tb00290.x

Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria - a prolific source of natural products. Tetrahedron. 2001; 57: 9347-9377. http://dx.doi.org/10.1016/S0040-4020(01)00931-0

Prashantkumar P, Angadi SB, Vidyasagar GM. Antimicrobial activity of blue-green and green algae. Indian J Pharm Sci. 2006; 68: 647-648.

Biondi N, Tredici MR, Taton A, Wilmotte A, Hodgson DA, Losi D, Marinelli F. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioacivities. J Appl Microbiol. 2008; 105: 105-115. http://dx.doi.org/10.1111/j.1365-2672.2007.03716.x

Zeeshan M, Suhail S, Biswas D, Farooqui A, Arif JM. Screening of selected cyanobacterial strains for phycochemical compounds and biological activities in vitro. Biochem Cell Arch. 2010; 10: 163-168.

Abed RMM, Dobrestov S, Al-Kharusi S, Schramm A, Jupp B, Golubic S. Cyanobacterial diversity and bioactivity of inland hypersaline microbial mats from a desert stream in the Sultanate of Oman. Fottea. 2011; 11: 215-224.

Ramamurthy V, Raveendran S. Antibacterial and antifungal activity of Spirulina platensis and Lyngbya majuscula. J Ecobiol. 2009; 24: 47-52.

Bohm GA, Pfleiderer W, Boger P, Scherer S. Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J Biol Chem. 1995; 270: 8536-8539. http://dx.doi.org/10.1074/jbc.270.15.8536

Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O. Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod. 2000; 63: 339-343. http://dx.doi.org/10.1021/np9903090

Ma L, Led JJ. Determination by high field NMR spectroscopy of the longitudinal electron relaxation rate in Cu(II) plastocyanin from Anabaena variabilis. J Am Chem Soc. 2000; 122: 7823-7824.

Hirata K, Takashina J, Nakagami H, Ueyama S, Murakami K, Kanamori T, Miyamoto K. Growth inhibition of various organisms by a violet pigment nostocine A, produced by Nostoc spongiaeforme. Biosci Biotech Bioch. 1996; 60: 1905-1906. http://dx.doi.org/10.1271/bbb.60.1905

Khairy HM, El-Kassas HY. Active substance from some blue green algal species used as antimicrobial agents. Afr J Biotechnol. 2010; 9: 2789-2800.

Thillairajasekar K, Duraipandiyan V, Perumal P, Ignacimuthu S. Antimicrobial activity of Trichodesmium erythraeum (Ehr) (microalga) from South East coast of Tamil Nadu, India. Int J Integr Biol. 2004; 5: 167-170.

Metting B, Pyne JW. Biologically active compounds from microalgae enzyme. Microb Technol. 1986; 8: 386-394.

Ozdemir G, Karabay N, Dolay M, Pazarbasi B. Antibacterial activity of volatile extracts of Spirulina plantensis. Phytother Res. 2004; 18: 754-757. http://dx.doi.org/10.1002/ptr.1541

El-Sheekh MM, Osman MEH, Dyab MA, Amer MS. Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol. 2006; 21: 42-50. http://dx.doi.org/10.1016/j.etap.2005.06.006

Ghasemi Y, Tabatabaei Y, Shafiee A, Amini M, Shokravi SH, Zarrini G. Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharmacol Biol. 2004; 2: 318-322. http://dx.doi. org/10.1080/13880200490511918

Fujita M, Nakao Y, Matsunaga S, Nishikawa T, Fusetani N. Sodium 1-(12-hydroxy) octadecany sulphate, an MMP2 inhibitor, isolated from a tunicate of the family Polyclinidae. J Nat Prod. 2002; 65: 1936-1938. http://dx.doi.org/10.1021/np020250o

Mundt S, Kreitlow S, Jansen R. Fatty acids with antibacterial activity from cyanobacterium Oscillatoria redekei HUB 051. Appl Phycol. 2003; 15: 263-267. http://dx.doi.org/10.1023/A:1023889813697

Shanab SMM. Bioactive allelo-chemical compounds from Oscillatoria species (Egyptian Isolates). Int J Agric Biol. 2007; 9: 617-621.

Frankmolle WP, Larsen LK, Caplan FR, Patterson GML, Knubel G, Levin IA, Moore RE. Antifungal cyclic peptides from the terrestrial blue green algae Anabaena laxa. 1. Isolation and biological properties. J Antib. 1992; 45: 1451-1457. http://dx.doi.org/10.7164/antibiotics.45.1451

Ishibashi M, Moore RE, Patterson GML, Xu C, Clardy J. Scytophycins, cytotoxic and antimycotic agents from cyanophyte Scytonema pseudohofmanii. J Org Chem. 1986; 51: 5300-5306.

Kaushik SJ, Hemre GI. 2008. Plant proteins as alternative sources for fish feed and farmed fish quality. In: Lie O (Ed.), Improving farmed fish quality and safety. Woodhead Publishing Limited, Cambridge, England, pp. 300-327.

Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971; 35: 171-205.

Desikachary TV. 1959. Cyanophyta. Indian Council of Agricultural Research: New Delhi. pp. 686.

Prescott GW. 1962. Algae of the Western Great Lake area. W.M.C. Dubuque, Brown Company, pp. 543-551.

Anagnostidis K, Komarek J. Modern approaches to the classification of cyanobacteria. Stigonematales. Arch Hydrobiol. 1990; 4: 224-286.

John DM, Whitton BA, Brook AJ. 2003. The freshwater algal flora of the British isles, an identifiction guide to freshwater and terrestrial algae. Cambridge University Press, pp. 117-122.

Lefort-Tran M, Pouphile M, Spathj S, Packer L. Cytoplasmic membrane changes during adaptation of the fresh water Cyanobacterium synchococcus 6311 to salinity. Plant Physiol. 1988; 87: 767-775. http://dx.doi.org/10.1104/pp.87.3.767

Marker AFH. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Fresh Water Biol. 1972; 2: 361-385.

Pisciotta JM, Zou Y, Baskakov IV. Light-dependent electrogenic activity of cyanobacteria. PLoS One. 2010; 5(5): 1-10. http://dx.doi.org/10.1371/journal.pone.0010821

Thummajitsakul S, Silprasit K, Sittipraneed S. Antibacterial activity of crude extracts of cyanobacteria Phormidium and Microcoleus species. Afr J Microbiol Res. 2012; 6(10): 2574-2579.‏ http://dx.doi.org/10.5897/ajmr12.152


Refbacks

  • There are currently no refbacks.